Skip to main content
Log in

Hemolymph cholinesterase activity in the Mussel Crenomytilus grayanus (Dunker, 1853) that was exposed to adverse natural and anthropogenic conditions

  • Biochemical Adaptation
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The influence of habitat conditions on the activity, the structure of the substrate specificity (the ratio of the substrate hydrolysis rates), and the kinetic parameters of substrate hydrolysis due to the effect of hemolymph cholinesterase of the mussel Crenomytilus grayanus was studied. Mussels were collected from areas that are influenced by seasonal and stationary upwelling, as well as from a polluted area. Upwelling and anthropogenic pressure were shown to alter the structure of hemolymph cholinesterase substrate specificity in mussels, up to complete loss of the ability to catalyze the hydrolysis of propionyland butyrylthiocholine. It was established that during the seasonal upwelling the efficiency of the cholinergic process in mussels is provided by a wide range of effective concentrations of the substrates and by decreasing their affinity to the enzyme. Under the conditions of chronic anthropogenic pollution, the cholinesterase of the mussel hemolymph loses its ability to hydrolyze substrates other than acetylthiocholine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyarova, M.D. and Lukyanova, O.N., DDT and HCH in mollusks from Peter the Great Bay (Sea of Japan), in Mater. III Mezhd. nauchno-prakt. konf. “Morskiye pribrezhnye ekosistemy. Vodorosli, bespozvonochnye i produkty ikh pererabotki”, Vladivostok, 8–10 sentyabrya 2008 g. (Proc. III Int. Sci. Pract. Conf. “Marine Coastal Ecosystems. Algae, Invertebrates and Products of Their Processing”, Vladivostok, September 8–10, 2008), Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr, 2008, pp. 181–182.

    Google Scholar 

  2. Brestkin, A.P., Kuznetsova, L.P., Moralev, S.N., et al., Kholinesterazy nazemnykh zhivotnykh i gidrobiontov (Cholinesterases of Terrestrial Animals and Aquatic Organisms), Vladivostok Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr, 1997.

    Google Scholar 

  3. Grigoryeva, N.I. and Khristoforova, N.K., Ecological and hydrological features of the western Peter the Great Bay, Probl. Reg. Ekol., 2001, no. 5, pp. 49–58.

    Google Scholar 

  4. Dovzhenko, N.V., Kavun, V.Ya., Belcheva, N.N., and Chelomin, V.P., Biochemical parameters of oxidative stress as indicators of anthropogenic pollution of aquatic ecosystems, in Mater. konf. molodykh uchenykh Tikhookean. Okeanol. Inst. im. V.I. Il’icheva Dal’nevost. Otd. Ross. Akad. Nauk “Okeanologicheskiye issledovaniya”, 27–30 noyabrya 2001 g. (Proc. Conf. Young Scientists of V.I. Il’ichev Pac. Oceanol. Inst., Far Eastern Branch, Russ. Acad. Sci. “Oceanographic Studies”, November 27–30, 2001), Vladivostok: Dal’nauka, 2002, pp. 290–296.

    Google Scholar 

  5. Dubina, V.A., Mitnik, L.M., and Katin, O.I., Features of water circulations in Peter the Great Bay inferred from satellite multisensor data, in Sovremennoye sostoyaniye i tendentsii izmeneniya prirodnoi sredy zaliva Petra Velikogo Yaponskogo morya (The Current Status and the Trends in the Environment of Peter the Great Bay, Sea of Japan), Moscow: Geos, 2008, pp. 82–96.

    Google Scholar 

  6. Kavun, V.Ya., Chepkasova, A.I., Podgurskaya, O.V., and Kovalev, N.N., Adaptation of the cholinergic system of Crenomytilus grayanus (Bivalvia: Mytilidae) to conditions of natural and anthropogenic impacts, Izv. Ross. Akad. Nauk, Ser. Biol., 2011, no. 2, pp. 220–226.

    Google Scholar 

  7. Kovekovdova, L.T. and Simokon’, M.V., Trends in the chemical and ecological situation in coastal waters of Primorsky Krai. Toxic elements in sediments and aquatic organisms, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2004, vol. 137, pp. 310–320.

    Google Scholar 

  8. Cornish-Bowden, A., Principles of Enzyme Kinetics, London Butterworth, 1976.

    Google Scholar 

  9. Mikheev, Ye.V. and Kovalev, N.N., Role of species differences in nerve tissue cholinesterase of Pacific cephalopods, Izv. Tikhookean. Nauchno–Issled. Inst. Rybn. Khoz. Okeanogr., 2007, vol. 151, pp. 460–465.

    Google Scholar 

  10. Podgurskaya, O.V., Kavun, V.Ya., and Lukyanova, O.N., Heavy metal accumulation and distribution in organs of the mussel Crenomytilus grayanus from upwelling areas of the Sea of Okhotsk and the Sea of Japan, Russ. J. Mar. Biol., 2004, vol. 30, no. 3, pp. 188–195.

    Article  CAS  Google Scholar 

  11. Podgurskaya, O.V. and Kavun, V.Ya., Comparative analysis of subcellular distribution of heavy metals in organs of the bivalve mollusks Crenomytilus grayanus and Modiolus modiolus in a continuously polluted environment, Russ. J. Mar. Biol., 2005, vol. 31, no. 6, pp. 373–381.

    Article  CAS  Google Scholar 

  12. Podgurskaya, O.V. and Kavun, V.Ya., Assessment of the adaptation capabilities of the bivalves Modiolus modiolus (Linnaeus, 1758) and Crenomytilus grayanus (Dunker, 1853) under increased levels of heavy metals in the environment, Russ. J. Mar. Biol., 2012, vol. 38, no. 2, pp. 188–196.

    Article  Google Scholar 

  13. Rozengart, E.V., Substrate–inhibitor analysis of cholinesterase from hemolymph of the Pacific gastropod mollusc Neptunea eulimata, J. Evol. Biochem. Physiol., 2001, vol. 37, no. 3, pp. 219–224.

    Article  CAS  Google Scholar 

  14. Hochachka, P.W. and Somero, G.N., Strategies of Biochemical Adaptation, Philadelphia Saunders, 1973.

    Google Scholar 

  15. Shulkin, V.M., Metally v ekosistemakh morskikh melkovodii (Metals in Ecosystems of Shallow Marine Waters), Vladivostok Dal’nauka, 2004.

    Google Scholar 

  16. Shulkin, V.M., Kavun, V.Ya., Tkalin, A.V., and Presley, B.J., The effect of metal concentration in bottom sediments on the accumulation of metals by the mytilids Crenomytilus grayanus and Modiolus kurilensis, Russ. J. Mar. Biol., 2002, vol. 28, no. 1, pp. 43–51.

    Article  CAS  Google Scholar 

  17. Shuntov, V.P., Biologiya dal’nevostochnykh morei Rossii (Biology of the Far Eastern Seas of Russia), Vladivostok: Tikhookean. Nauchno–Issled. Rybokhoz. Tsentr, 2001, vol. 1.

  18. Belcheva, N.N., Zakhartsev, M.V., Dovzhenko, N.V., et al., Anthropogenic pollution stimulates oxidative stress in soft tissues of mussel Crenomytilus grayanus (Dunker, 1853), Ocean Sci. J., 2011, vol. 46, no. 2, pp. 85–94.

    Article  CAS  Google Scholar 

  19. Bonacci, S., Brown, M., Dissanayake, A., et al., Esterase activity in the bivalve mollusk Adamussium colbecky as a biomarker for pollution monitoring in the Antarctic marine environment, Mar. Pollut. Bull., 2004, vol. 49, pp. 445–455.

    Article  CAS  PubMed  Google Scholar 

  20. Brown, M., Davies, I.M., Moffat, C.F., et al., Characterisation of choline esterases and their tissue and subcellular distribution in mussel (Mytilus edulis), Mar. Environ. Res., 2004, vol. 57, no. 3, pp. 155–169.

    Article  CAS  PubMed  Google Scholar 

  21. Cotou, E., Tsangaris, C., and Henry, M., Comparative study of biochemical and immunological biomarkers in three marine bivalves exposed at a polluted site, Environ. Sci. Pollut. Res., 2013, vol. 20, no. 3, pp. 1812–1822.

    Article  CAS  Google Scholar 

  22. Ellman, G.L., Courtney, K.D., and Andres, V., Jr., and Featherstone, R.M., A new and rapid colorimetric determination of acetylcholinesterase activity, Biochem. Pharmacol., 1961, vol. 7, no. 1, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  23. Gorbi, S., Lamberti, C.V., Notti A., et al., An ecotoxicological protocol with caged mussels, Mytilus galloprovincialis, for monitoring the impact of an offshore platform in the Adriatic Sea, Mar. Environ. Res., 2008, vol. 65, no. 1, pp. 34–49.

    Article  CAS  PubMed  Google Scholar 

  24. Kavun, V.Ya., Shulkin, V.M., and Khristoforova, N.K., Metal accumulation in mussels of the Kuril Islands, north-west Pacific Ocean, Mar. Environ. Res., 2002, vol. 53, pp. 219–226.

    Article  CAS  PubMed  Google Scholar 

  25. Leinio, S. and Lehtonen, K.K., Seasonal variability in biomarkers in the bivalves Mytilus edulis and Macoma balthica from the northern Baltic Sea, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2005, vol. 140, nos. 3–4, pp. 408–421.

    Google Scholar 

  26. Moralev, S.N. and Rozengart, E.V., Comparative Enzymology of Cholinesterases, La Jolla Int. Univ. Line, 2007.

    Google Scholar 

  27. Nunes, B., The use of cholinesterases in ecotoxicology, Rev. Environ. Contam. Toxicol., 2011, vol. 212, pp. 29–59.

    CAS  PubMed  Google Scholar 

  28. Payene, J.F., Mathieu, A., Melwin, W., and Fancey, L.L., Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland, Mar. Pollut. Bull., 1996, vol. 32, no. 2, pp. 225–231.

    Article  Google Scholar 

  29. Shulkin, V.M. and Kavun, V.Ya., The use of marine bivalves in heavy metal monitoring near Vladivostok, Russia, Mar. Pollut. Bull., 1995, vol. 31, pp. 330–333.

    Article  CAS  Google Scholar 

  30. Shulkin, V.M., Presley, B.J., and Kavun, V.Ya., Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments, Environ. Int., 2003, vol. 29, no. 4, pp. 493–502.

    Article  CAS  PubMed  Google Scholar 

  31. Tkalin, A.V., Lishavskaya, T.S., and Shulkin, V.M., Radionuclides and trace metals in mussels and bottom sediments around Vladivostok, Russia, Mar. Pollut. Bull., 1998, vol. 36, pp. 551–554.

    Article  CAS  Google Scholar 

  32. Tsangaris, C., Kormas, K., Strogyloudi, E., et al., Multiple biomarkers of pollution effects in caged mussels on the Greek coastline, Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol., 2010, vol. 151, no. 3, pp. 369–378.

    CAS  Google Scholar 

  33. Valbonesi, P., Sartor, G., and Fabbri, E., Characterization of cholinesterase activity in three bivalves inhabiting the North Adriatic Sea and their possible use as sentinel organism for biosurveillance programmes, Sci. Total Environ., 2003, vol. 312, pp. 79–88.

    Article  CAS  PubMed  Google Scholar 

  34. Wallace, W.G., Lee, B.G., and Luoma, S.N., Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM), Mar. Ecol.: Prog. Ser., 2003, vol. 249, pp. 183–197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Kavun.

Additional information

Original Russian Text © N.N. Kovalev, V.Ya. Kavun, E.Ya. Kostetsky, Ye.V. Mikheev, O.V. Podgurskaya, 2016, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, N.N., Kavun, V.Y., Kostetsky, E.Y. et al. Hemolymph cholinesterase activity in the Mussel Crenomytilus grayanus (Dunker, 1853) that was exposed to adverse natural and anthropogenic conditions. Russ J Mar Biol 42, 65–72 (2016). https://doi.org/10.1134/S1063074016010120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074016010120

Keywords

Navigation