Skip to main content
Log in

The nutritional value of holothurians

  • Review
  • Applied Marine Biology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

In the current decade, holothurians are becoming more popular among researchers due to the recently obtained data about the chemical structures and physiological activities of bioactive ingredients that are extracted from these marine invertebrates. In Southeast Asia, Japan, Korea, and China, the use of these animals as a valuable food product and an object of traditional folk medicine has had a long history. At the same time, in western countries, as well as in Russia, products from sea cucumbers are little known and are often considered as an exotic oriental cuisine. This paper provides an analytical review of the literature that is dedicated to the nutritional value of holothurians as a potential source of components for functional food and nutraceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abedin, M.Z., Karim, A.A., Latiff, A.A., et al., Biochemical and radical-scavenging properties of sea cucumber (Stichopus vastus) collagen hydrolysates, Nat. Prod. Res., 2014, vol. 28, pp. 1302–1305.

    Article  PubMed  CAS  Google Scholar 

  2. Adrianov, A.V., Current problems in marine biodiversity studies, Russ. J. Mar. Biol., 2004, vol. 30, suppl. 1, pp. 1–16.

    Article  Google Scholar 

  3. Althunibat, O.Y., Ridzwan, B.N., Taher, M., et al., Antioxidant and cytotoxic properties of two sea cucumbers, Holothuria edulis Lesson and Stichopus horrens Selenka, Acta Biol. Hung., 2013, vol. 64, pp. 10–20.

    Article  PubMed  CAS  Google Scholar 

  4. Ameratunga, R., Crooks, C., Simmons, G., and Woon, S.-T., Health risks and adverse reactions to functional foods, Crit. Rev. Food Sci. Nutr., 2014 Aug 27:0. [Epub ahead of print] (in press).

    Google Scholar 

  5. Aminin, D.L., Gorpenchenko, T.Y., Bulgakov, V.P., et al., Triterpene glycoside cucumarioside A(2)-2 from sea cucumber stimulates mouse immune cell adhesion, spreading, and motility, J. Med. Food, 2011, vol. 14, pp. 594–600.

    Article  PubMed  CAS  Google Scholar 

  6. Aydin, M., Sevgili, H., Tufan, B., et al., Proximate composition and fatty acid profile of three different fresh and dried commercial sea cucumbers from Turkey, Int. J. Food Sci. Technol., 2011, vol. 46, pp. 500–508.

    Article  CAS  Google Scholar 

  7. Bechtel, P.J., Oliveira, A.C.M., Demir, N., and Smiley, S., Chemical composition of the giant red sea cucumber, Parastichopus californicus, commercially harvested in Alaska, Food Sci. Nutr., 2013, vol. 1, no. 1, pp. 63–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bordbar, S., Ebrahimpour, A., Hamid, A.A., et al., The improvement of the endogenous antioxidant property of stone fish (Actinopyga lecanora) tissue using enzymatic proteolysis, BioMed Res. Int., 2013. doi.org/10.1155/2013/849529

    Google Scholar 

  9. Bordbar, S., Farooq, A.F., and Saari, N., High-value components and bioactives from sea cucumbers for functional foods—A review, Mar. Drugs, 2011, vol. 9, pp. 1761–1805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Carballeira, N.M., Cruz, C., and Sostre, A., Identification of the novel 7-methyl-6-octadecenoic acid in Holothuria mexicana, J. Nat. Prod., 1996, vol. 59, pp. 1076–1078.

    Article  PubMed  CAS  Google Scholar 

  11. Careaga, V.P., Muniain, C., and Maier, M.S., Fatty acid composition of the edible sea cucumber Athyonidium chilensis, Nat. Prod. Res., 2013, vol. 27, pp. 639–647.

    Article  CAS  Google Scholar 

  12. Chen, J., Overview of sea cucumber farming and sea ranching practices in China, SPC Beche-de-mer Inf. Bull., 2003, no. 18, pp. 18–23.

    Google Scholar 

  13. Chen, S., Hy, Y., Ye, X., et al., Sequence determination and anticoagulant and antithrombotic activities of a novel sulfated fucan isolated from the sea cucumber Isostichopus badionotus, Biochim. Biophys. Acta, 2012, vol. 1820, pp. 989–1000.

    Article  PubMed  CAS  Google Scholar 

  14. Chenghui, L., Beiwei, Z., Xiuping, D., and Liguo, C., Study on the separation and antioxidant activity of enzymatic hydrolysates from sea cucumber, Food Ferment. Ind., 2007, vol. 33, pp. 50–53.

    Google Scholar 

  15. Conand, C., Population status, fisheries and trade of sea cucumbers in Africa and Indian Ocean, in Sea Cucumbers. A Global Review on Fishery and Trade, FAO Fish. Tech. Pap., Rome: FAO, 2008, no. 516, pp. 153–205.

    Google Scholar 

  16. Drazen, J.C., Phleger, C.F., Guest, M.A., and Nichols, P.D., Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the NorthEast Pacific Ocean: food web implications, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2008, vol. 151, pp. 79–87.

    Article  CAS  Google Scholar 

  17. Enns, J.E., Yeganeh, A., Zarychanski, R., et al., The impact of omega-3 polyunsaturated fatty acid supplementation on the incidence of cardiovascular events and complications in peripheral arterial disease: a systematic review and meta-analysis, BMC Cardiovasc. Disord., 2014, May 31;14:70. doi 10.1186/1471-2261-14-70

    Google Scholar 

  18. Esmat, A.Y., Said, M.M., Soliman, A.A., et al., Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats, Nutrition, 2013, vol. 29, pp. 258–267.

    Article  PubMed  CAS  Google Scholar 

  19. Ginger, M.L., Billett, D.S.M., Mackenzie, K.L., et al., Organic matter assimilation and selective feeding by holothurians in the deep sea: some observations and comments, Prog. Oceanogr., 2001, vol. 50, pp. 407–421.

    Article  Google Scholar 

  20. Glauser, B.F., Mourão, P.A., and Pomin, V.H., Marine sulfated glycans with serpin-unrelated anticoagulant properties, Adv. Clin. Chem., 2013, vol. 62, pp. 269–303.

    Article  PubMed  CAS  Google Scholar 

  21. Gul, K., Singh, A. K., and Jabeen, R., Nutraceuticals and functional foods: the foods for future world, Crit. Rev. Food Sci. Nutr., 2015, Jan 28:0. [Epub ahead of print] (in press).

    Google Scholar 

  22. Haider, M.S., Sultana, R., Jamil, K., et al., A study on proximate composition, amino acid profile, fatty acid profile and some mineral contents in two species of sea cucumber, J. Anim. Plant Sci., 2015, vol. 25, pp. 168–175.

    Google Scholar 

  23. Henry, C.J., Functional foods, Eur. J. Clin. Nutr., 2010, vol. 64, pp. 657–659.

    Article  PubMed  CAS  Google Scholar 

  24. Hu, S., Chang, Y., Wang, J., et al., Fucosylated chondroitin sulfate from Acaudina molpadioides improves hyperglycemia via activation of PKB/GLUT4 signaling in skeletal muscle of insulin resistant mice, Food Funct., 2013, vol. 4, pp. 1639–1646.

    Article  PubMed  CAS  Google Scholar 

  25. Hu, S., Chang, Y., Wang, J., et al., Fucosylated chondroitin sulfate from sea cucumber in combination with rosiglitazone improved glucose metabolism in the liver of the insulin-resistant mice, Biosci., Biotechnol., Biochem., 2013, vol. 77, pp. 2263–2269.

    Article  CAS  Google Scholar 

  26. Hu, S., Chang, Y., He, M., et al., Fucosylated chondroitin sulfate from sea cucumber improves insulin sensitivity via activation of PI3K/PKB pathway, J. Food Sci., 2014, vol. 79, pp. H1424–H1429.

    Article  PubMed  CAS  Google Scholar 

  27. Hu, S.W., Tian, Y.Y., Chang, Y.G., et al., Fucosylated chondroitin sulfate from sea cucumber improves glucose metabolism and activates insulin signaling in the liver of insulin-resistant mice, J. Med. Food, 2014, vol. 17, pp. 749–757.

    Article  PubMed  CAS  Google Scholar 

  28. Hu, S., Xu, L., Shi, D., et al., Eicosapentaenoic acidenriched phosphatidylcholine isolated from Cucumaria frondosa exhibits anti-hyperglycemic effects via activating phosphoinositide 3-kinase/protein kinase B signal pathway, J. Biosci. Bioeng., 2014, vol. 117, pp. 457–463.

    Article  PubMed  CAS  Google Scholar 

  29. Hu, X., Li, Z., Xue, Y., et al., Dietary saponins of sea cucumber ameliorate obesity, hepatic steatosis, and glucose intolerance in high-fat diet-fed mice, J. Med. Food, 2012, vol. 15, pp. 909–916.

    Article  PubMed  CAS  Google Scholar 

  30. Hu, X.Q., Xu, J., Xue, Y., et al., Effects of bioactive components of sea cucumber on the serum, liver lipid profile and lipid absorption, Biosci., Biotechnol., Biochem., 2012, vol. 76, pp. 2214–2218.

    Article  CAS  Google Scholar 

  31. Hu, X., Wang, Y., Wang, J., et al., Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPAR and SREBP-1c signaling, Lipids Health Dis., 2010, vol. 9, p. 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Huihui, C., Ping, Y., and Jianrong, L., The preparation of collagen polypeptide with free radical scavenging ability purified from Acaudina molpadioides Semper, J. Chin. Inst. Food Sci. Technol., 2010. http://en.cnki.com.cn/ Article_en/CJFDTOTAL-ZGSP201001002.htm

    Google Scholar 

  33. Jiao, J., Li, Q., Chu, J., et al., Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: a systematic review and meta-analysis of randomized controlled trials, Am. J. Clin. Nutr., 2014, vol. 100, pp. 1422–1436.

    Article  PubMed  CAS  Google Scholar 

  34. Kaneniwa, M., Yutaka, I., Endo, S., and Takagi, T., Fatty acids in Holothuroidea: occurrence of cis-14-tricosenoic acid, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 1986, vol. 84, pp. 451–455.

    Article  Google Scholar 

  35. Khotimchenko, Y.S., Antitumor properties of nonstarch polysaccharides: fucoidans and chitosans, Russ. J. Mar. Biol., 2010, vol. 36, pp. 321–330.

    Article  CAS  Google Scholar 

  36. Kiew, P.L. and Don, M.M., Jewel of the seabed: sea cucumbers as nutritional and drug candidates, Int. J. Food Sci. Nutr., 2012, vol. 63, pp. 616–636.

    Article  PubMed  CAS  Google Scholar 

  37. Kim, J.Y., Kim, D.B., and Lee, H.J., Regulations on health/functional foods in Korea, Toxicology, 2006, vol. 221, pp. 112–118.

    Article  PubMed  CAS  Google Scholar 

  38. Kim, S.K. and Himaya, S.W., Triterpene glycosides from sea cucumbers and their biological activities, Adv. Food Nutr. Res., 2012, vol. 65, pp. 297–319.

    Article  PubMed  Google Scholar 

  39. Lee, H.-W., Lim, N.-L., Cho K., et al., Characterisation of inorganic elements and volatile organic compounds in the dried sea cucumber Stichopus japonicus, Food Chem., 2014, vol. 147, pp. 34–41.

    Article  PubMed  CAS  Google Scholar 

  40. Li, D.-T., Chang, Y.-Q., Wu, Z.-H., et al., Analysis of nutritive composition of the body wall in wild sea cucumber Apostichopus japonicus Selenka at Zhangzi Island in spring and autumn, Shuichan Kexue, 2009, vol. 28, pp. 365–369.

    CAS  Google Scholar 

  41. Liu, X., Sun, Z., Zhang, M., et al., Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus, Carbohydr. Polym., 2012, vol. 90, pp. 1664–1670.

    Article  PubMed  CAS  Google Scholar 

  42. Mamelona, J., Pelletier, E.M., Lalancette, K.G., et al., Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber Cucumaria frondosa, Food Chem., 2007, vol. 104, pp. 1040–1047.

    Article  CAS  Google Scholar 

  43. Mamelona, J., Saint-Louis, R., and Pelletier, E., Nutritional composition and antioxidant properties of protein hydrolysates prepared from echinoderm byproducts, Int. J. Food Sci. Technol., 2010, vol. 45, pp. 147–154.

    Article  CAS  Google Scholar 

  44. Mitsuoka, T., Development of functional foods, Biosci. Microbiota, Food Health, 2014, vol. 33, pp. 117–128.

    Article  Google Scholar 

  45. Nguyen, T.H., Um, B.N., and Kim, S.M., Two unsaturated fatty acids with potent a-glucosidase inhibitory activity purified from the body wall of sea cucumber (Stichopus japonicus), J. Food Sci., 2011, vol. 76, pp. 208–214.

    Article  CAS  Google Scholar 

  46. Olivera-Castillo, L., Davalos, A., Grant, G., et al., Diets containing sea cucumber (Isostichopus badionotus) meals are hypocholesterolemic in young rats, PLoS One, 2013, vol. 8, 11: e79446. doi. 10.1371/journal.pone.0079446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Özen, A.E., Bibiloni, M.M., Pons, A., and Tur, J.A., Consumption of functional foods in Europe; a systematic review, Nutr. Hosp., 2014, vol. 29, pp. 470–478.

    PubMed  Google Scholar 

  48. Özer, N. P., Mol, S., and Varlik, C., Effect of handling procedures on the chemical composition of sea cucumber, Turk. J. Fish. Aquat. Sci., 2004, vol. 4, pp. 71–74.

    Google Scholar 

  49. Pislyagin, E.A., Aminin, D.L., Silchenko, A.S., et al., Immunomodulatory action of triterpene glycosides isolated from the sea cucumber Actinocucumis typica. Structure-activity relationships, Nat. Prod. Commun., 2014, vol. 9, pp. 771–772.

    PubMed  CAS  Google Scholar 

  50. Purcell, S.W., Value, market preferences and trade of Beche-de-mer from Pacific Island sea cucumbers, PLoS One, 2014, Apr 15;9(4):e95075. doi. 10.1371/journal.pone.0095075

    Article  PubMed  PubMed Central  Google Scholar 

  51. Russell, F.D. and Bürgin-Maunder, C.S., Distinguishing health benefits of eicosapentaenoic and docosahexaenoic acids, Mar. Drugs, 2012, vol. 10, pp. 2535–2559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Salarzadeh, A.R., Afkhami, M., Bastami, K.D., et al., Proximate composition of two sea cucumber species Holothuria pavra and Holothuria arenicola in Persian Gulf, Ann. Biol. Res., 2012, vol. 3, pp. 1305–1311.

    CAS  Google Scholar 

  53. Saravanan, R., Isolation of low-molecular-weight heparin/heparan sulfate from marine sources, Adv. Food Nutr. Res., 2014, vol. 72, pp. 45–60.

    Article  PubMed  Google Scholar 

  54. Shahidi, F., Nutraceuticals and functional foods: whole versus processed foods, Trends Food Sci. Technol., 2009, vol. 20, pp. 376–387.

    Article  CAS  Google Scholar 

  55. Sicuro, B., Piccinno, M., Gai, F., et al., Food quality and safety of Mediterranean sea cucumbers Holothuria tubulosa and Holothuria polii in Southern Adriatic Sea, Asian J. Anim. Vet. Adv., 2012, vol. 7, pp. 851–859.

    Article  CAS  Google Scholar 

  56. Svetashev, V.I., Levin, V.S., Lam, C.N., and Nga, D.T., Lipid and fatty acid composition of holothurians from tropical and temperate waters, Comp. Biochem. Physiol., 1991, vol. 4, pp. 489–494.

    Google Scholar 

  57. Tanaka, K., Nishizono, S., Kase, A., et al., Effects of dietary black sea cucumber on serum and liver lipid concentrations in rats, J. Jpn. Soc. Nutr. Food Sci., 2003, vol. 56, pp. 175–179.

    Article  CAS  Google Scholar 

  58. Vaiday, H. and Cheema, S.K., Sea cucumber and blue mussel: new sources of phospholipid enriched omega-3 fatty acids with a potential role in 3T3-L1 adipocyte metabolism, Food Funct., 2014, vol. 5, pp. 3287–3295.

    Article  CAS  Google Scholar 

  59. Wang, J., Wang, Y., Tang, Q., et al., Antioxidation activities of low-molecular-weight gelatin hydrolysate isolated from the sea cucumber Stichopus japonicas, J. Ocean Univ. China, 2010, vol. 9, pp. 94–98.

    Article  CAS  Google Scholar 

  60. Wen, J., Hu, C., and Sigang, F.S., Chemical composition and nutritional quality of sea cucumbers, J. Sci. Food Agric., 2010, vol. 90, pp. 2469–2474.

    Article  PubMed  CAS  Google Scholar 

  61. Xu, H., Wang, J., Chang, Y., et al., Fucoidan from the sea cucumber Acaudina molpadioides exhibits anti-adipogenic activity by modulating the Wnt/β-catenin pathway and down-regulating the SREBP-1c expression, Food Funct., 2014, vol. 5, pp. 1547–1555.

    Article  PubMed  CAS  Google Scholar 

  62. Xu, H., Wang, J., Zhang, X., et al., Inhibitory effect of fucosylated chondroitin sulfate from the sea cucumber Acaudina molpadioides on adipogenesis is dependent on Wnt/β-catenin pathway, J. Biosci. Bioeng., 2015, vol. 119, pp. 85–91.

    Article  PubMed  CAS  Google Scholar 

  63. Xu, J., Wang, Y.M., Feng, T.Y., et al., Isolation and anti-fatty liver activity of a novel cerebroside from the sea cucumber Acaudina molpadioides, Biosci., Biotechnol., Biochem., 2011, vol. 75, pp. 1466–1471.

    Article  CAS  Google Scholar 

  64. Yang, Q., Liu, T., Kuklina, E.V., et al., Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey, Arch. Intern. Med., 2011, vol. 171, pp. 1183–1191.

    Article  PubMed  Google Scholar 

  65. Yu, L., Xue, C., Chang, Y., et al., Structure elucidation of fucoidan composed of a novel tetrafucose repeating unit from sea cucumber Thelenota ananas, Food Chem., 2014, vol. 146, pp. 113–119.

    Article  PubMed  CAS  Google Scholar 

  66. Zeng, M., Xiao, F., Li, B., et al., Study on free radical scavenging activity of sea cucumber (Paracaudina chinens var.) gelatin hydrolysate, J. Ocean Univ. China, 2007, vol. 6, pp. 255–258.

    Article  CAS  Google Scholar 

  67. Zhang, B., Xue, C., Hu, X., et al., Dietary sea cucumber cerebroside alleviates orotic acid-induced excess hepatic adipopexis in rats, Lipids Health Dis., 2012. doi. 10.1186/1476-511X-11-48

    Google Scholar 

  68. Zheng, R., Li, X., Cao, B., et al., Dietary Apostichopus japonicus enhances the respiratory and intestinal mucosal immunity in immunosuppressive mice, Biosci., Biotechnol., Biochem., 2015, vol. 79, pp. 253–259.

    Article  CAS  Google Scholar 

  69. Zhong, Y., Ahmad, K.M., and Shahidi, F., Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa), J. Agric. Food Chem., 2007, vol. 55, pp. 1188–1192.

    Article  PubMed  CAS  Google Scholar 

  70. Zuo, T., Li, X., Chang, Y., et al., Dietary fucoidan of Acaudina molpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice, Food Funct., 2015, vol. 6, pp. 415–422.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Khotimchenko.

Additional information

Original Russian Text © Yu.S. Khotimchenko, 2015, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khotimchenko, Y.S. The nutritional value of holothurians. Russ J Mar Biol 41, 409–423 (2015). https://doi.org/10.1134/S1063074015060061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074015060061

Keywords

Navigation