Skip to main content
Log in

The dynamics of the intracellular contents of carbon, nitrogen, and chlorophyll a under conditions of batch growth of the diatom Phaeodactylum tricornutum (Bohlin, 1897) at different light intensities

  • Algology
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

It was found that during batch growth of the diatom Phaeodactylum tricornutum (Bohlin, 1897) the specific content of nitrogen in the cells (relative to carbon) decreased with decreasing nitrogen concentration in the medium below ∼10 µM/L. When the nitrogen of the medium was exhausted, the microalga continued their growth for some time using the cell reserve of this element. The C/N ratio in cells increased from 5 to 14 and the density of the culture (relative to carbon) increased by approximately twofold. The correlation between the specific-growth rate of P. tricornutum and the C/N ratio in the cells was described by an equation similar to the Droop (1968) model. The ratio of the intracellular concentrations of carbon and chlorophyll a (C/Chl a), while reducing the specific nitrogen in the cells, increased exponentially; this effect increased with increasing light intensity. The value of the minimum cell quota for nitrogen did not depend on the light condition of culture growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekhina, N.D., Balnokin, Yu.V., Gavrilenko, V.F., et al., Fiziologiya rastenii: Uchebnik dlya studentov vuzov (Plant Physiology: Manual for High Institution Students), Moscow: Akademiya, 2005.

    Google Scholar 

  2. Artyukhova, V.I., Bykova, N.I., Goryunova, S.V., and Levich, A.P., Kinetics of growth, consumption and demand for nitrogen and phosphorus in four species of green microalgae, Vestn. Mosk. Univ., Ser. Biol., 1988, vol. 1, pp. 47–52.

    Google Scholar 

  3. Belevich, T.A., Production parameters of phytoplankton in the White Sea depending on the source of nitrogen, Mater. XXVIII mezh. konf. “Biologicheskie resursy Belogo morya i vnutrennikh vodoemov evropeiskogo Severa” (Proc. XXVIII Int. Conf. “Biological Resources of the White Sea and Inland Waters of the European North”), Petrozavodsk, 2009, pp. 75–79.

    Google Scholar 

  4. Krupatkina, D.K., Phytoplankton growth peculiarities as connected with biogenic elements content in cells, Biol. Morya (Vladivostok), 1978, no. 47, pp. 18–25.

    Google Scholar 

  5. Levich, A.P. and Bulgakov, N.G., Needs of planktonic algae in substrate and energy resources of the environment: the concept and measurement, Usp. Sovrem. Biol., 1997, vol. 117, pp. 107–121.

    Google Scholar 

  6. Maximova, M.P., Mineral nutrition and problems of the phytoplankton nutrient salts, Obzor. Inform. Tsentr. Nauchno-Issled. Inst. Inform. Tekhn.-Ekonom. Issled. Rybn. Khoz., 1977, no. 1.

  7. Mineeva, N.M. and Schur, L.A., Chlorophyll content per unit of phytoplankton biomass (review), Al’gologiya, 2012, vol. 22, no. 4, pp. 441–456.

    Google Scholar 

  8. Parsons, T.R., Takashi, M., and Hargrave, B.T., Biological Oceanography Processes, New York: Pergamon, 1979, 2nd. ed.

    Google Scholar 

  9. Rubin, A.B., Biophysical methods in environmental monitoring, Soros. Obraz. Zh., 2000, vol. 4, pp. 7–13.

    Google Scholar 

  10. Finenko, Z.Z. and Lanskaya, L.A., Growth and proliferation rate of algae in limited volumes of water, in Ekologicheskaya fiziologiya morskikh planktonnykh vodoroslei (Ecological Physiology of Marine Planktonic Algae) Kiev: Naukova Dumka, 1971, pp. 22–51.

    Google Scholar 

  11. Shoman, N.Yu. and Akimov, A.I., Effect of light and temperature on specific growth rate of the diatom Phaeodactylum tricornutum and Nitzschia sp. No. 3, Mor. Ekol. Zh., 2013, vol. 12, no. 1, pp. 85–91.

    Google Scholar 

  12. Algal Culturing Techniques, Andersen, R., Ed., Amsterdam: Elsevier, 2005.

    Google Scholar 

  13. Behrenfeld, M., Boss, E., Siegel, D.A., et al., Carbonbased ocean productivity and phytoplankton physiology from space, Global Biogeochem. Cycles, 2005, vol. 19, GB1006. doi: 10.1029/2004GB002299

    Article  Google Scholar 

  14. Droop, M.R., Vitamin B12 and marine ecology. IV. Kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. U.K., 1968, vol. 48, pp. 689–733.

    Article  CAS  Google Scholar 

  15. Falkowski, P.G. and Raven, J.A., Aquatic Photosynthesis, Malden: Blackwell, 1997, 1st ed.

    Google Scholar 

  16. Finenko, Z.Z., Hoepffner, N., Williams, R., and Piontkovski, S.A., Phytoplankton carbon to chlorophyll a ratio: response to light, temperature and nutrient limitation, Mar. Ecol. J., 2003, vol. 2, no. 2, pp. 40–64.

    Google Scholar 

  17. Flynn, K.J., Do we need complex mechanistic photoacclimation models for phytoplankton, Limnol. Oceanogr., 2003, vol. 48, no. 6, pp. 2243–2249.

    Article  CAS  Google Scholar 

  18. Fujimoto, N., Sudo, R., Sugiura, N., and Inamori, Y., Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N: P supply ratios and temperatures, Limnol. Oceanogr., 1997, vol. 42, no. 2, pp. 250–256.

    Article  CAS  Google Scholar 

  19. Han, P., Virtanen, M., Koponen, J., and Straskraba, M., Effect of photoinhibition on algal photosynthesis: a dynamic model, J. Plankton Res., 2000, vol. 22, no. 5, pp. 865–885.

    Article  CAS  Google Scholar 

  20. Jeffrey, S.W. and Humphrey, G.F., New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochem. Physiol. Pflanz., 1975, vol. 167, pp. 191–194.

    CAS  Google Scholar 

  21. Laws, E.A. and Bannister, T.T., Nutrientand lightlimited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the oceans, Limnol. Oceanogr., 1980, vol. 25, pp. 457–473.

    Article  CAS  Google Scholar 

  22. Li, W., Gao, K., and Beardall, J., Interactive effects of ocean acidification and nitrogen–limitation on the diatom Phaeodactylum tricornutum, PloS One, 2012, vol. 7, no. 12, p. e51590.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Litchman, E., Klausmeier, C.A., Miller, J.R., et al., Multi–nutrient, multi–group model of present and future oceanic phytoplankton communities Biogeosciences, 2006, vol. 3, pp. 585–606.

    CAS  Google Scholar 

  24. Long, S.P., Humphries, S., and Falkowski, P.G., Photoinhibition of photosynthesis in nature, Annu. Rev. Plant Physiol., Plant Mol. Biol., 1994, vol. 45, no. 1, pp. 633–662.

    Article  CAS  Google Scholar 

  25. Methods of Seawater Analysis, Grasshoff, K. et al., Eds., Weinheim: Verlag Chemie, 1983, 2nd ed.

    Google Scholar 

  26. Rhee, G., and Gotham, I.J., The effect of environmental factors on phytoplankton growth: light and the interactions of light with nitrate limitation, Limnol. Oceanogr., 1981, vol. 26, no. 4, pp. 649–659.

    Article  CAS  Google Scholar 

  27. Sakshaug, E., Andresen, K., and Kiefer, D.A., A steady state description of growth and light absorption in the marine planktonic diatom Skeletonema costatum, Limnol. Oceanogr., 1989, vol. 34, pp. 198–205.

    Article  Google Scholar 

  28. Sarthou, G., Timmermans, K.R., Blain, S., and Treguer, P., Growth physiology and fate of diatoms in the ocean: a review, J. Sea Res., 2005, vol. 53, no. 1, pp. 25–42.

    Article  CAS  Google Scholar 

  29. Sciandra, A., Gostan, J., Collos, Y., et al., Growth compensating phenomena in continuous cultures of Dunaliella tertiolecta limited simultaneously by light and nitrate, Limnol. Oceanogr., 1997, vol. 42, no. 6, pp. 1325–1339.

    Article  CAS  Google Scholar 

  30. Sjöberg, S., A mathematical and conceptual framework models of the pelagic ecosystems of the Baltiñ Sea: formulation and explorative simulations, Contrib. Askö Lab. Univ. Stockholm, Sweden, 1980, no. 27.

  31. Thomas, W.H. and Dodson, A.N., On nitrogen deficiency in tropical Pacific oceanic phytoplankton. II. Photosynthetic and cellular characteristics of a chemostat-grown diatom, Limnol. Oceanogr., 1972, vol. 17, no. 4, pp. 515–523.

    Article  CAS  Google Scholar 

  32. Westberry, T., Behrenfeld, M.J., Siegel, D.A., and Bosset, E., Carbon based primary productivity modeling with vertically resolved photoacclimation, Global Biogeochem. Cycles, 2008, vol. 22, p. GB2024. doi:10.1029/2007GB003078

    Article  Google Scholar 

  33. Wood, E.D., Armstrong, F.A.J., and Richards, F.A., Determination of nitrate in sea water by cadmium–copper reduction to nitrite, J. Mar. Biol. Assoc. U.K., 1967, vol. 47, pp. 23–31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Shoman.

Additional information

Original Russian Text © N.Yu. Shoman, 2015, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoman, N.Y. The dynamics of the intracellular contents of carbon, nitrogen, and chlorophyll a under conditions of batch growth of the diatom Phaeodactylum tricornutum (Bohlin, 1897) at different light intensities. Russ J Mar Biol 41, 356–362 (2015). https://doi.org/10.1134/S1063074015050132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074015050132

Keywords

Navigation