Skip to main content
Log in

The thermotropic behavior and major molecular species composition of the phospholipids of echinoderms

  • Comparative Biochemistry
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

This study examines the molecular species composition and heat-induced crystalline-liquid crystalline phase transitions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) from the muscle tissues of six species of echinoderms that were collected during the summer: the starfishes Distolasterias nipon and Asterias amurensis, the sea urchin Strongylocentrotus intermedius, and the holothurians Eupentacta fraudatrix, Cucumaria frondosa japonica, and Apostichopus japonicus. Phospholipids (PLs) were in the liquid crystalline state, which is optimal for the functioning of the cell membranes. The use of data on the molecular species composition of PLs for the interpretation of their thermotropic behavior indicated that homeoviscous adaptation is achieved by various rearrangements in the composition of the aliphatic groups of PLs. The phase transitions of PC and PE of echinoderms (except holothurians) were symbatic. The presence of a high-temperature peak on the PC thermograms of C. frondosa japonica and A. japonicus is attributable to the melting of the phospholipid domain, which is composed of molecular species with saturated aliphatic groups. Such domains are responsible for a significant shift in the temperature ranges of the phase transitions of phospholipids of holothurians and sea urchin towards temperatures above 0°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ivkov, V.G. and Berestovskii, G.N., Dinamicheskaya struktura lipidnogo bisloya (Dynamical Structure of the Lipid Bilayer), Moscow: Nauka, 1981.

    Google Scholar 

  2. Gennis, R., Biomembranes: Molecular Structure and Function, New York: Springer-Verlag, 1989.

    Book  Google Scholar 

  3. Kostetsky, E.Ya., Velansky, P.V., and Sanina, N.M., Phospholipids of the organs and tissues of echinoderms and tunicates from Peter the Great Bay (Sea of Japan), Russ. J. Mar. Biol., 2012, vol. 38, no. 1, pp. 65–71.

    Google Scholar 

  4. Kostetsky, E.Ya., Velansky, P.V., and Sanina, N.M., Individual variations of the phospholipid composition of the organs of arthropods, echinoderms, and tunicates from Peter the Great Bay of the Sea of Japan, Russ. J. Mar. Biol., 2012, vol. 38, no. 2, pp. 166–173.

    Google Scholar 

  5. Kostetsky, E.Ya., Velansky, P.V., and Sanina, N.M., Phase transitions of phospholipids as a criterion for assessing the capacity for thermal adaptation in fish, Russ. J. Mar. Biol., 2013, vol. 39, no. 2, pp. 136–143.

    Google Scholar 

  6. Kostetsky, E.Ya., Sanina, N.M., and Naumenko, N.V., Influence of the fatty acid composition upon the structure of the thermogram of the phase transition of phosphatidylcholine (PC) from the holothurian Cucumaria fraudatrix, Zh. Evol. Biochim. Fiziol., 1992, vol. 28, no. 4, pp. 426–433.

    Google Scholar 

  7. Kostetsky, E.Ya. and Sergeyuk, N.N., Influence of seasonal factors upon the content of phospholipids and their plasmalogenic forms in the musscle tissue of marine invertebrates, Zh. Evol. Biochim. Fiziol., 1986, vol. 22, no. 2, pp. 132–142.

    Google Scholar 

  8. Sanina, N.M., Membrane-forming lipids, physicochemical bases of thermoadaptation of marine invertebrates and macrophytes, Extended Abstract of Doctoral (Biol.) Dissertation, Vladivostok: Dal’nevost. Gos. Univ., 2006.

    Google Scholar 

  9. Kharakoz, D.P., On a possible biological role of the phase transition liquid-solid in biological membranes, Usp. Biol. Khim., 2001, vol.?41, pp. 333–364.

    Google Scholar 

  10. Brouwers, J.F.H.M., Vernooij, E.A.A.M., Tielens, A.G.M., and van Golde, L.M.G., Rapid separation and identification of phosphatidylethanolamine molecular species, J. Lipid Res., 1999, vol. 40, pp. 164–169.

    CAS  PubMed  Google Scholar 

  11. Carboni, S., Hughes, A.D., Atack, T., et al., Fatty acid profiles during gametogenesis in sea urchin (Paracentrotus lividus): effects of dietary inputs on gonad, egg and embryo profiles, Comp. Biochem. Physiol. A, 2013, vol. 164, pp. 376–382.

    Article  CAS  Google Scholar 

  12. Drazen, J.C., Phleger, C.F., Guest, M.A., and Nichols, P.D., Lipid, sterols and fatty acid composition of abyssal holothurians and ophiuroids from the North-East Pacific Ocean: food web implications, Comp. Biochem. Physiol. B, 2008, vol. 151, no. 1, pp. 79–87.

    Article  PubMed  Google Scholar 

  13. Fodor, E., Jones, R.H., Buda, C., et al., Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study, Lipids, 1995, vol. 30, no. 12, pp. 1119–1126.

    Article  CAS  PubMed  Google Scholar 

  14. Folch, J., Lees, M., and Sloane-Stangley, G.H., Asimple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 1957, vol. 226, no. 1, pp. 497–509.

    CAS  PubMed  Google Scholar 

  15. Guschina, I.A. and Harwood, J.L., Mechanisms of temperature adaptation in poikilotherms, FEBS Lett., 2006, vol. 580, pp. 5477–5483.

    Article  CAS  PubMed  Google Scholar 

  16. Han, X. and Gross, R.W., Electrospray ionization mass spectroscopic analysis of human erythrocyte plasma membrane phospholipids, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 10635–10639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Han, X. and Gross, R.W., Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples, Mass Spectrom. Rev., 2005, vol. 24, pp. 367–712.

    Article  CAS  PubMed  Google Scholar 

  18. Hughes, A.D., Cook, E.J., Orr, H., et al., The transformation of long chain polyunsaturated fatty acids in benthic food webs: the role of sea urchins, J. Exp. Mar. Biol. Ecol., 2011, vol. 409, pp. 229–234.

    Article  CAS  Google Scholar 

  19. Kanehisa, M.J. and Tsong, T.V., Cluster model of lipid phase transitions with application to passive permeation of molecules and structure relaxations in lipid bilayers, J. Am. Chem. Soc., 1978, vol. 18, pp. 424–432.

    Article  Google Scholar 

  20. Logue, J.A., de Vries, A.L., Fodor, E., and Cossins, A.R., Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure, J. Exp. Biol., 2000, vol. 203, pp. 2105–2115.

    CAS  PubMed  Google Scholar 

  21. Sanina, N.M. and Kostetsky, E.Ya., Seasonal changes in thermotropic behavior of phosphatidylcholine and phosphatidylethanolamine in different organs of the ascidian Halocynthia aurantium, Comp. Biochem. Physiol. B, 2001, vol. 128, pp. 295–305.

    Article  CAS  PubMed  Google Scholar 

  22. Sanina, N.M. and Kostetsky, E.Ya., Thermotropic behavior of major phospholipids from marine invertebrates: changes with warm-acclimation and seasonal acclimatization, Comp. Biochem. Physiol. B, 2002, vol. 133, no. 2, pp. 143–153.

    Article  PubMed  Google Scholar 

  23. Seddon, J.M. and Templer, R.H., Polymorphism of lipid-water system, in Structure and Dynamics of Membranes, Elsevier, 1995, pp. 97–161.

    Google Scholar 

  24. Tenchov, B.G., Nonuniform lipid distribution in membranes, Prog. Surf. Sci., 1985, vol. 20, no. 21, pp. 273–340.

    Article  CAS  Google Scholar 

  25. Vecchini, A., Panagia, V., and Binagli, L., Analysis of phospholipid molecular species, Mol. Cell Biochem., 1997, vol. 172, pp. 129–136.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, D., Xu, W., Xu, X., et al., Determination of intramuscular phospholipid classes and molecular species in Gaoyou duck, Food Chem., 2009, vol. 112, pp. 150–155.

    Article  CAS  Google Scholar 

  27. Weaver, F.E., Shaikh, S.R., and Edidin, M., Plasma membrane lipid diffusion and composition of sea urchin egg membranes vary with ocean temperature, Chem. Phys. Lipids, 2008, vol. 151, no. 1, pp. 62–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ya. Kostetsky.

Additional information

Original Russian Text © E.Ya. Kostetsky, N.M. Sanina, P.V. Velansky, 2014, published in Biologiya Morya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostetsky, E.Y., Sanina, N.M. & Velansky, P.V. The thermotropic behavior and major molecular species composition of the phospholipids of echinoderms. Russ J Mar Biol 40, 131–139 (2014). https://doi.org/10.1134/S1063074014020059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074014020059

Keywords

Navigation