Russian Journal of Marine Biology

, Volume 40, Issue 1, pp 1–9 | Cite as

The prebiotic potential of polysaccharides and extracts of seaweeds

  • T. S. Zaporozhets
  • N. N. Besednova
  • T. A. Kuznetsova
  • T. N. Zvyagintseva
  • I. D. Makarenkova
  • S. P. Kryzhanovsky
  • V. G. Melnikov


Based on our own and current literature data, we analyzed the prebiotic properties of polysaccharides and extracts of seaweeds. The role of prebiotics, particularly polysaccharides, in the normalization of intestinal microflora is discussed; consideration is also given to the possibility of seaweed polysaccharide fermentation by colonic microflora and selective stimulation of the growth of colonic bifidobacteria. This review also analyzes other useful properties of seaweed polysaccharides and discusses the prospects for inclusion of seaweed polysaccharides in the composition of functional nutrition products for the purposes of correcting intestinal bacterial disorders and inflammatory processes and normalizing the immune and metabolic status.


prebiotics, bifidobacteria, microbiota, gastrointestinal tract, extracts, polysaccharides, seaweeds, synbiotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Koneva, E.L., Substantiation and development of technologies for alginate-containing functional products, Extended Abstract of Cand. Sci. (Tech.) Dissertation, Vladivostok, 2009.Google Scholar
  2. 2.
    Kochetkov, N.K., Bochkov, A.F., Dmitriev, B.A., and Usov, A.I., Khimiya uglerodov (Chemistry of Carbons), Moscow: Khimiya, 1967.Google Scholar
  3. 3.
    Kuznetsova, T.A., Correction of immunity and haemostasis disorders with biopolymers from marine hydrobionts (experimental and clinical aspects), Extended Abstract of Cand. Sci. (Med.) Dissertation, Moscow, 2009.Google Scholar
  4. 4.
    Kuznetsova, T.A., Zaporozhets, T.S., Besednova, N.N., et al., The study of the prebiotic potential of biologically active substances from marine hydrobionts and the development of new functional nutrition products, Vestn. Dal’nevost. Fil. Ross. Akad. Nauk, 2011, no. 2, pp. 147–150.Google Scholar
  5. 5.
    Kuznetsova, T.A., Zaporozhets, T.S., Makarenkova I.D., et al., The prebiotic potential of polysaccharides from the brown alga Fucus evanescens and significance for the clinical use, Tikhookean. Med. J., 2012, no. 1, pp. 37–40.Google Scholar
  6. 6.
    Kusaikin, M.I., O-glycosyl hydrolases of marine invertebrates. Properties and specifics of fucoidanases, sulfatases, and 1–3-beta-D-glucanases, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Vladivostok, 2003.Google Scholar
  7. 7.
    Maistrovsky, K.V., Zaporozhets, T.S., Fedyanina, L.N., et al., The effect of fucoidan immunomodulator from the brown algae Fucus evanescens on parameters of the antioxidant system and lipid and carbohydrate exchange in mice, Tikhookean. Med. J., 2009, no. 3, pp. 97–100.Google Scholar
  8. 8.
    Osipov, G.A., Parfenov, A.I., Ruchkina, I.N., et al., The clinical significance of the study of microorganisms on the intestinal mucous membrane by cultural-biochemical and chromatography-mass spectrometry methods, Exp. Klin. Gastroenterol., 2003, no. 4, pp. 59–67.Google Scholar
  9. 9.
    MegaResearch, The Russian market of prebiotics of oligosaccharides (of plant and animal origin), 2010, Google Scholar
  10. 10.
    Khotimchenko, M.Yu., The sorption properties and the pharmacological activity of non-starch polysaccharides, Extended Abstract of Doct. Sci. (Med.) Dissertation, Vladivostok, 2011.Google Scholar
  11. 11.
    Khotimchenko, Yu.S., Antitumor properties of nonstarch polysaccharides: fucoidans and chitosans, Russ. J. Mar. Biol., 2010, vol. 36, no. 5, pp. 321–330.CrossRefGoogle Scholar
  12. 12.
    Khotimchenko, Yu.S., Yermak, I.M., Bednyak, A.Ye., et al., Pharmacology of non-starch polysaccharides, Vestn. Dal’nevost. Fil. Ross. Akad. Nauk, 2005, no. 1, pp. 72–82.Google Scholar
  13. 13.
    Shevchenko, N.M., The structure, biological activity of polysaccharides of some brown algae and products of their fermentative transformation, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Vladivostok, 2001.Google Scholar
  14. 14.
    Shenderov, B.A., Meditsinskaya mikrobnaya ekologiya i funktsional’noe pitanie. Tom 3: Probiotiki i funktsional’noe pitanie (Medicinal Microbial Ecology and Functional Nutrition, Vol. 3: Probiotics and Functional Nutrition), Moscow: Grant’, 2001.Google Scholar
  15. 15.
    Akiyama, H., Endo, T., Nakakita, R., et al., Effect of depolymerized alginates on the growth of bifidobacteria, Biosci. Biotechnol. Biochem., 1992, vol. 56, pp. 355–356.PubMedCrossRefGoogle Scholar
  16. 16.
    Bouhnik, Y., Raskine, L., Simoneau, G., et al., The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, doseresponse relation study, Am. J. Clin. Nutr., 2004, vol. 80, pp. 1658–1664.PubMedGoogle Scholar
  17. 17.
    Coles, L.T., Moughan, P.J., and Darragh, A.J., In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals, Anim. Feed Sci. Technol., 2005, vol. 123, p. 428.Google Scholar
  18. 18.
    Courtois, J., Oligosaccharides from land plants and algae: production and applications in therapeutics and biotechnology, Curr. Opin. Microbiol., 2009, vol. 12, p. 261.PubMedCrossRefGoogle Scholar
  19. 19.
    Delattre, C., Fenoradoso, T., and Michaud, P., Galactans: an overview of their most important sourcing and applications as natural polysaccharides, Braz. Arch. Biol. Technol., 2011, vol. 54, pp. 264–273.Google Scholar
  20. 20.
    Deville, C., Damas, J., Forget, P., et al., Laminarin in the dietary fiber concept, J. Sci. Food Agric., 2004, vol. 84, pp. 1030–1038.CrossRefGoogle Scholar
  21. 21.
    Gibson, G.R. and Roberfroid, M.B., Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics, J. Nutr., 1995, vol. 125, no. 6, pp. 1401–1412.PubMedGoogle Scholar
  22. 22.
    Gibson, G.R. and Roberfroid, M.B., Handbook of Prebiotics, Boca Raton: Taylor and Francis Group, 2008.CrossRefGoogle Scholar
  23. 23.
    Gupta, S. and Abu-Ghannam, N., Bioactive potential and possible health effects of edible brown seaweeds, Trends Food Sci. Technol., 2011, vol. 22, pp. 315–326.CrossRefGoogle Scholar
  24. 24.
    Handbook of Marine Macroalgae: Biotechnology and Applied Phycology, Oxford: Wiley, 2011.Google Scholar
  25. 25.
    Holdt, S.L. and Kraan, S., Bioactive compounds in seaweed: functional food applications and legislation, J. Appl. Phycol., 2011, vol. 23, p. 543–597.CrossRefGoogle Scholar
  26. 26.
    Hu, B., Gong, Q.N., Wang Y., et al., Prebiotic effects of neoagaro-oligosaccharides prepared by enzymatic hydrolysis of agarose, Anaerobe, 2006, vol. 12, pp. 260–266.PubMedCrossRefGoogle Scholar
  27. 27.
    Irhimeh, M.R., Fitton, J.H., Lowenthal, R.M., and Kongtawelert, P., A quantitative method to detect fucoidan in human plasma using a novel antibody, Meth. Find. Exp. Clin. Pharmacol., 2005, vol. 27, pp. 705–711.CrossRefGoogle Scholar
  28. 28.
    Jiao, G., Yu, G., Zhang, J., and Ewart, H.S., Chemical structures and bioactivities of sulfated polysaccharides from marine algae, Mar. Drugs, 2011, vol. 9, no. 2, pp. 196–233.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Kim, K.J., Lee, O.H., and Lee, Y., Fucoidan, a sulfated polysaccharide, inhibits adipogenesis through the mitogen-activated protein kinase pathway in 3T3-L1 preadipocytes, Life Sci., 2012, vol. 32, no. 6, pp. 439–447.Google Scholar
  30. 30.
    Kuda, T., Yano, T., Matsuda, N., et al., Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by intestinal microflora in vitro and in rats, Food Chem., 2005, vol. 91, pp. 745–754.CrossRefGoogle Scholar
  31. 31.
    Lynch, M.B., Sweeney, T., Callan, J.J., et al., The effect of dietary Laminaria-derived laminarin and fucoidan on nutrient digestibility, nitrogen utilisation, intestinal microflora and volatile fatty acid concentration in pigs, J. Sci. Food Agric., 2010, vol. 90, no. 3, pp. 430–441.PubMedGoogle Scholar
  32. 32.
    MacDonald, T.T. and Monteleone, G., Immunity, inflammation, and allergy in the gut, Science, 2005, vol. 307, pp. 1920–1925.PubMedCrossRefGoogle Scholar
  33. 33.
    Macfarlane, G.T., Steed, H., and Macfarlane, S., Bacterial metabolism and health-related effects of galactooligosaccharides and other prebiotics, J. Appl. Microbiol., 2008, vol. 104, pp. 305–344.PubMedGoogle Scholar
  34. 34.
    Marzorati, M., Verhelst, A., and Luta, G., In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements, Int. J. Food Microbiol., 2010, vol. 139, pp. 168–176.PubMedCrossRefGoogle Scholar
  35. 35.
    Michel, C., Lahaye, M., Bonnet, C., et al., In vitro fermentation by human faecal bacteria of total and purified dietary fibers from brown seaweeds, Br. J. Nutr., 1996, vol. 75, pp. 263–280.PubMedCrossRefGoogle Scholar
  36. 36.
    Muraoka, T., Ishihara, K., Oyamada, C., et al., Fermentation properties of low-quality red alga Susabinori Porphyra yezoensis by intestinal bacteria, Biosci. Biotechnol. Biochem., 2008, vol. 72, no. 7, pp. 1731–1739.PubMedCrossRefGoogle Scholar
  37. 37.
    O’Doherty, J.V., Dillon, S., Figat, S., et al., The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs, Anim. Feed Sci. Technol., 2010, vol. 157, pp. 173–180.CrossRefGoogle Scholar
  38. 38.
    O’Sullivan, L., Murphy, B., McLoughlin, P., et al., Prebiotics from marine macroalgae for human and animal health applications, Mar. Drugs, 2010, no. 8, pp. 2038–2064.Google Scholar
  39. 39.
    Park, M.K., Jung, U., and Roh, C., Fucoidan from marine brown algae inhibits lipid accumulation, Mar. Drugs, 2011, vol. 9, no. 8, pp. 1359–1367.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Patel, S. and Goyal, A., The current trends and future perspectives of prebiotics research: a review, 3 Biotech., 2012, vol. 2, no. 2, pp. 115–125.PubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pokusaeva, K., Fitzgerald, G., and Sinderen, D., Carbohydrate metabolism in Bifidobacteria, Genes Nutr., 2011, vol. 6, no. 3, pp. 285–306.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Ramnani, P., Chitarrari, R., Tuohy, K., et al., In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds, Anaerobe, 2012, vol. 18, no. 1, pp. 1–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Ray, B. and Lahaye, M., Cell-wall polysaccharides from the marine green alga Ulva “rigida” (Ulvales, Chlorophyta), Chemical structure of ulvan, Carbohydr. Res., 1995, vol. 274, pp. 313–318.CrossRefGoogle Scholar
  44. 44.
    Reilly, P., O’Doherty, J.V., and Pierce, K.M., The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig, Animal, 2008, vol. 2, pp. 1465–1473.PubMedCrossRefGoogle Scholar
  45. 45.
    Roberfroid, M., Gibson, G.R., Hoyles, L., et al., Prebiotic effects: metabolic and health benefits, Br. J. Nutr., 2010, vol. 104, suppl. 2, pp. S1–S63.PubMedCrossRefGoogle Scholar
  46. 46.
    Shibata, H., Iimuro, M., Uchiya, N., et al., Preventive effects of Cladosiphon fucoidan against Helicobacter pylori infection in Mongolian gerbils, Helicobacter, 2003, vol. 8, pp. 59–65.PubMedCrossRefGoogle Scholar
  47. 47.
    Smith A.G., O’Doherty, J.V., Reilly, P., et al., The effects of laminarin derived from Laminaria digitata on measurements of gut health: selected bacterial populations, intestinal fermentation, mucin gene expression and cytokine gene expression in the pigs, Br. J. Nutr., 2011, vol. 105, pp. 669–677.PubMedCrossRefGoogle Scholar
  48. 48.
    Sweeney, T., Dillon, S., Fanning, J., et al., Evaluation of seaweed-derived polysaccharides on indices of gastrointestinal fermentation and selected populations of microbiota in newly weaned pigs challenged with Salmonella typhimurium, Anim. Feed Sci. Technol., 2011, vol. 165, pp. 85–93.CrossRefGoogle Scholar
  49. 49.
    Tokita, Y., Nakajima, K., Mochida, H., et al., Development of a fucoidan-specific antibody and measurement of fucoidan in serum and urine by sandwich ELISA, Biosci. Biotechnol. Biochem., 2010, vol. 74, pp. 350–357.PubMedCrossRefGoogle Scholar
  50. 50.
    Van den Broek, L.A., Hinz, S.W., Beldman, G., et al., Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics, Mol. Nutr. Food Res., 2008, vol. 52, no. 1, pp. 146–163.PubMedCrossRefGoogle Scholar
  51. 51.
    Wang, Y., Han, F., Hu, B., et al., In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate, Nutr. Res., 2006, vol. 8, pp. 597–608.CrossRefGoogle Scholar
  52. 52.
    Yamada, Y., Miyoshi, T., Tanada, S., and Imaki, M., Digestibility and energy availability of Wakame (Undaria pinnatifida) seaweed in Japanese, Nippon Eiseigaku Zasshi, 1991, vol. 46, pp. 788–794.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • T. S. Zaporozhets
    • 1
  • N. N. Besednova
    • 1
  • T. A. Kuznetsova
    • 1
  • T. N. Zvyagintseva
    • 2
  • I. D. Makarenkova
    • 1
  • S. P. Kryzhanovsky
    • 3
  • V. G. Melnikov
    • 4
  1. 1.Somov Scientific Research Institute of Epidemiology and Microbiology, Siberian BranchRussian Academy of Medical SciencesVladivostokRussia
  2. 2.Elyakov Pacific Institute of Bioorganic Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia
  3. 3.Far Eastern Federal University, School of BiomedicineVladivostokRussia
  4. 4.International Science and Technology CenterMoscowRussia

Personalised recommendations