Russian Journal of Marine Biology

, Volume 40, Issue 1, pp 36–42 | Cite as

The impact of waterborne cues from conspecifics and other species on the larvae of Halichondria panacea Pallas, 1766 (Porifera: Demospongiae)

  • V. V. Khalaman
  • N. M. Korchagina
  • A. Yu. Komendantov
Fouling Biology


The impacts of different concentrations of the excretory-secretory products (ESPs) of the solitary ascidian Styela rustica (Linnaeus, 1767) and the sponge Halichondria panacea (Pallas, 1766) on the settlement, metamorphosis, and mortality rates of H. panacea larvae were studied in a laboratory experiment. At high concentrations, substances released into the environment by the ascidian S. rustica exerted a negative impact on the metamorphosis rate of sponge larvae. The exposure to moderate or high concentrations of ESPs from conspecific adults led to high mortality of larval sponges; however, low conspecific ESP concentrations markedly stimulated metamorphosis; larval mortality was low. Apparently, different concentrations of the same ESPs can have effects with a different strength and focus. This should be taken into account in the study of chemically mediated interactions between aquatic organisms.


fouling communities Halichondria panicea Styela rustica excretory-secretory products larvae, settlement metamorphosis White Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ivanova, L.V., The life cycle of the Barents Sea sponge Halichondria panicea (Pallas), in Morfogenezy u gubok (Morphogeneses in Sponges), Leningrad: Leningrad. Gos. Univ., 1981, pp. 59–73.Google Scholar
  2. 2.
    Kulakovsky, E.E. and Shamarin, A.Yu., Settlement and growth patterns of young mussels (Mytilus edulis L.) under conditions of experimental commercial cultivation in the White Sea, Tr. Zool. Inst., Akad. Nauk SSSR, 1989, vol. 203, pp. 63–75.Google Scholar
  3. 3.
    Railkin, A.I., Kolonizatsiya tverdykh tel bentosnymi organizmami (Colonization of Solid Bodies by Benthic Organisms), St. Petersburg: St.-Peterb. Gos. Univ., 2008.Google Scholar
  4. 4.
    Skidchenko, V.S., Vysotskaya, R.U., Krupnova, M.Yu., and Khalaman, V.V., The effect of excretory-secretory products of some White Sea fouling organisms on the biochemical indices of the mussel Mytilus edulis L. (Mollusca: Bivalvia), Izv. Ross. Akad. Nauk, Ser. Biol., 2011, no. 6, pp. 670–683.Google Scholar
  5. 5.
    Khalaman, V.V., Belyaeva, D.V., and Flyachinskaya, L.P., Effect of excretory-secretory products of some fouling organisms on settling and metamorphosis of the larvae of Styela rustica (Ascidiae), Russ. J. Mar. Biol., 2008, vol. 34, no. 3, pp. 170–173.CrossRefGoogle Scholar
  6. 6.
    Khalaman, V.V. and Komendantov, A.Yu., Structure of fouling communities formed by Halichondria panicea (Porifera: Demospongiae) in the White Sea, Russ. J. Ecol., 2011, vol. 42, no. 6, pp. 493–501.CrossRefGoogle Scholar
  7. 7.
    Khalaman, V.V., Lezin, P.A., and Galitskaya, A.D., Effect of the excretory-secretory products of some marine invertebrates on byssus production of the blue mussel Mytilus edulis (Bivalvia: Mytilidae), Russ. J. Mar. Biol., 2009, vol. 35, no. 3, pp. 224–229.CrossRefGoogle Scholar
  8. 8.
    Khalaman, V.V., Mukhina, Yu.I., and Komendantov, A.Yu., The effects of the excretory-secretory products of fouling organisms on settlement of larvae of the sponge Halichondria panicea (Pallas, 1766) (Porifera: Demospongiae), Russ. J. Mar. Biol., 2011, vol. 37, no. 6, pp. 494–500.CrossRefGoogle Scholar
  9. 9.
    Khalaman, V.V., Flyachinskaya, L.P., and Lezin, P.A., The influence of excretory-secretory products of some fouling invertebrates on larval settlement of Mytilus edulis L. (Bivalvia: Mollusca), Zool. Bespozvonochnykh, 2009, vol. 6, no. 1, pp. 65–72.Google Scholar
  10. 10.
    Althoff, K., Schutt, C., Steffen, R., et al., Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar. Biol., 1998, vol. 130, pp. 529–536.CrossRefGoogle Scholar
  11. 11.
    Andre, C. and Rosenberg, R., Adult-larval interactions in the suspension-feeding bivalves Cerastoderma edule and Mya arenaria, Mar. Ecol.; Progr. Ser., 1991, vol. 71, pp. 227–234.CrossRefGoogle Scholar
  12. 12.
    Becerro, M.A., Turon, X., and Uriz, M.J., Multiple functions for secondary metabolites in encrusting marine invertebrates, J. Chem. Ecol., 1997, vol. 23, pp. 1527–1547.CrossRefGoogle Scholar
  13. 13.
    Brock, E., Nylund, G.M., and Pavia, H., Chemical inhibition of barnacle larval settlement by the brown alga Fucus vesiculosus, Mar. Ecol.; Progr. Ser., 2007, vol. 337, pp. 165–174.CrossRefGoogle Scholar
  14. 14.
    Bryan, P., McClintock, J., Slattery, M., and Rittschol, D., A comparative study of the non-acidic chemically mediated antifoulant properties of three sympatric species of ascidians associated with seagrass habitats, Biofouling, 2003, vol. 19, pp. 235–245.PubMedCrossRefGoogle Scholar
  15. 15.
    Cimino, G., De Stefano, S., and Minale, L., Paniceins, unusual aromatic sesquiterpenoids linked to a quinol or quinone system from the marine sponge Halichondria panicea, Tetrahedron, 1973, vol. 29, pp. 2565–2570.CrossRefGoogle Scholar
  16. 16.
    Da Gama, B.A.P., Pereira, R.C., Soares, A.R., et al., Is the mussel test a good indicator of antifouling activity? A comparison between laboratory and field assays, Biofouling, 2003, vol. 19, pp. 161–169.PubMedCrossRefGoogle Scholar
  17. 17.
    Davis, A.R., Alkaloids and ascidian chemical defense: evidence for the ecological role of natural products from Eudistoma olivaceum, Mar. Biol., 1991, vol. 111, P. 375–379.CrossRefGoogle Scholar
  18. 18.
    Davis, A.R., Butler, A.J., van Altena, I., Settlement behaviour of ascidian larvae: preliminary evidence for inhibition by sponge allelochemicals, Mar. Ecol.; Progr. Ser., 1991, vol. 72, pp. 117–123.CrossRefGoogle Scholar
  19. 19.
    Degnan, B.M. and Johnson, C.R., Inhibition of settlement and metamorphosis of the ascidian Herdmania curvata by non-geniculate coralline algae, Biol. Bull., 1999, vol. 197, pp. 332–340.PubMedCrossRefGoogle Scholar
  20. 20.
    De Voogd, N.J., Becking, L.E., Hoeksema, B.W., et al., Sponge interactions with spatial competitors in the Spermonde Archipelago, Boll. Mus. Ist. Biol. Univ. Genova, 2004, vol. 68, pp. 253–261.Google Scholar
  21. 21.
    Dobretsov, S., Dahms, H.-U., and Qian, P.Y., Antilarval and antimicrobial activity of waterborne metabolites of the sponge Callyspongia (Euplacella) pulvinata: evidence of allelopathy, Mar. Ecol.; Progr. Ser., 2004, vol. 271, pp. 133–146.CrossRefGoogle Scholar
  22. 22.
    Dobretsov, S., Dahms, H.-U., Tsoi, M.Y., and Qian, P.-Yu., Chemical control of epibiosis by Hong Kong sponges: the effect of sponge extracts on micro- and macrofouling communities, Mar. Ecol.; Progr. Ser., 2005, vol. 297, pp. 119–129.CrossRefGoogle Scholar
  23. 23.
    Durante, K.M., Larval behavior, settlement preference and induction of metamorphosis in the temperate solitory ascidian Molgula citrine Alder, Hancock, J. Exp. Mar. Biol. Ecol., 1991, vol. 145, pp. 175–187.CrossRefGoogle Scholar
  24. 24.
    Dyrynda, P.E., Modular sessile invertebrates contain larvatoxic allelochemicals, Dev. Comp. Immunol., 1983, vol. 7, pp. 621–624.CrossRefGoogle Scholar
  25. 25.
    Engel, S. and Pawlik, J.R., Allelopathic activities of sponge extracts, Mar. Ecol.; Progr. Ser., 2000, vol. 207, pp. 273–281.CrossRefGoogle Scholar
  26. 26.
    Green, K.M., Russell, B.D., Clark, R.J., et al., A sponge allelochemical induces ascidian settlement but inhibits metamorphosis, Mar. Biol., 2002, vol. 140, pp. 355–363.CrossRefGoogle Scholar
  27. 27.
    Henrikson, A.A. and Pawlik, J.R., A new antifouling assay method: results from field experiments using extracts of four marine organisms, J. Exp. Mar. Biol. Ecol., 1995, vol. 194, pp. 157–165.CrossRefGoogle Scholar
  28. 28.
    Ivanisevic, J., Thomas, O.P., Pedel, L., et al., Biochemical trade-offs: evidence for ecologically linked secondary metabolism of the sponge Oscarella balibaloi, PLos One, 2011, vol. 6, pp. 1–11.CrossRefGoogle Scholar
  29. 29.
    Joullie, M.M., Leonard, M.S., Portonovo, P., et al., Chemical defense in ascidians of the Didemnidae family, Bioconj. Chem., 2003, vol. 14, pp. 30–37.CrossRefGoogle Scholar
  30. 30.
    Kobayashi, M. and Kitagawa, I., Likely microbial participation in the production of bioactive marine sponge chemical constituents, in Sponge Sciences: Multidisciplinary Perspectives, Tokyo: Springer-Verlag, 1998, pp. 379–389.Google Scholar
  31. 31.
    Koh, E.G.L. and Sweatman, H., Chemical warfare among scleractinians: bioactive natural products from Tubastraea faulkneri Wells kill larvae of potential competitors, J. Exp. Mar. Biol. Ecol., 2000, vol. 251, pp. 141–160.PubMedCrossRefGoogle Scholar
  32. 32.
    Koplovitz, G., McClintock, J.B., Amsler, Ch.D., and Baker, B.J., A comprehensive evaluation of the potential chemical defenses of Antarctic ascidians against sympatric fouling microorganisms, Mar. Biol., 2011, vol. 158, pp. 2661–2671.CrossRefGoogle Scholar
  33. 33.
    Krug, P.J., Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race, in Progress in Molecular and Subcellular Biology: Marine Molecular Biotechnology, Antifouling Compounds, Berlin: Springer, 2006, pp. 1–53.Google Scholar
  34. 34.
    Leong, W. and Pawlik, J.R., Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges, Mar. Ecol.; Progr. Ser., 2010, vol. 406, pp. 71–78.CrossRefGoogle Scholar
  35. 35.
    Lippert, H., Brinkmeyer, R., Mulhaupt, T., and Iken, K., Antimicrobial activity in sub-Arctic marine invertebrates, Polar Biol., 2003, vol. 26, pp. 591–600.CrossRefGoogle Scholar
  36. 36.
    Manilal, A., Sujith, S., Sabarathnam, B., et al., Antifouling potentials of seaweeds collected from the southwest coast of India, World J. Agric. Sci., 2010, vol. 6, pp. 243–248.Google Scholar
  37. 37.
    Marti, R., Fontana, A., Uriz, M.J., and Cimino, G., Quantitative assessment of natural toxicity in sponges: toxicity bioassay versus compound quantification, J. Chem. Ecol., 2003, vol. 29, pp. 1307–1318.PubMedCrossRefGoogle Scholar
  38. 38.
    Martin, D. and Uriz, M.J., Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrates, J. Exp. Mar. Biol. Ecol., 1993, vol. 173, pp. 11–27.CrossRefGoogle Scholar
  39. 39.
    McClintock, J.B., Amsler, M.O., Amsler, C.D., et al., Biochemical composition, energy content and chemical antifeedant and antifoulant defenses of the colonial Antarctic ascidian Distaplia cylindrica, Mar. Biol., 2004, vol. 145, pp. 885–894.CrossRefGoogle Scholar
  40. 40.
    Nakamura, H., Deng, S., Takamansu, M., et al., Structure of halipanicine, a new sesquiterpene isothiocyanate from the Okinawan marine sponge Halichondria panicea (Pallas), Agric. Biol. Chem., 1991, vol. 55, pp. 581–583.CrossRefGoogle Scholar
  41. 41.
    Núñez-Pons, L., Forestieri, R., Nieto, R.N., et al., Chemical defenses of tunicates of the genus Aplidium from the Weddell Sea (Antarctica), Polar Biol., 2010, vol. 33, pp. 1319–1329.CrossRefGoogle Scholar
  42. 42.
    Odate, S. and Pawlik, J.R., The role of vanadium in the chemical defense of the solitary tunicate, Phallusia nigra, J. Chem. Ecol., 2007, vol. 33, pp. 643–654.PubMedCrossRefGoogle Scholar
  43. 43.
    Paul, V.J., Kuffner, I.B., Walters, L.J., et al., Chemically mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites asteroides, Mar. Ecol.; Progr. Ser., 2011, vol. 426, pp. 161–170.CrossRefGoogle Scholar
  44. 44.
    Pawlik, J.R., Henkel, T.P., McMurray, S.E., et al., Patterns of sponge recruitment and growth on a shipwreck corroborate chemical defense resource trade-off, Mar. Ecol.; Progr. Ser., 2008, vol. 368, pp. 137–143.CrossRefGoogle Scholar
  45. 45.
    Pereira, R.C., Carvalho, A.G.V., Gama, B.A.P., and Coutinho, R., Field experimental evaluation of secondary metabolites from marine invertebrates as antifoulants, Braz. J. Biol., 2002, vol. 62, pp. 311–320.PubMedCrossRefGoogle Scholar
  46. 46.
    Pisut, D.P. and Pawlik, J.R., Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J. Exp. Mar. Biol. Ecol., 2002, vol. 270, pp. 203–214.CrossRefGoogle Scholar
  47. 47.
    Schneemann, I., Nagel, K., Kajahn, I., et al., Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea, Appl. Environ. Microbiol., 2010, vol. 76, pp. 3702–3714.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Stoecker, D., Chemical defenses of ascidians against predators, Ecology, 1980, vol. 61, pp. 1327–1334.CrossRefGoogle Scholar
  49. 49.
    Tamburri, M.N., Finelli, C.M., Wethey, D.S., and Zimmer-Faust, R.K., Chemical induction of larval settlement behavior in flow, Biol. Bull., 1996, vol. 191, pp. 367–373.CrossRefGoogle Scholar
  50. 50.
    Thacker, R.W., Becerro, M.A., Lumbang, W.A., and Paul, V.J., Allelopathic interactions between sponges on a tropical reef, Ecology, 1998, vol. 79, pp. 1740–1750.CrossRefGoogle Scholar
  51. 51.
    Turon, X., Becerro, M.A., Uriz, M.J., and Llopis, J., Small-scale association measures in epibenthic communities as a clue for allelochemical interactions, Oecologia, 1996, vol. 108, pp. 351–360.Google Scholar
  52. 52.
    Turon, X., Marti, R., and Uriz, M.J., Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave, Sci. Mar., 2009, vol. 73, pp. 387–397.CrossRefGoogle Scholar
  53. 53.
    Woodin, S.A., Recruitment of infauna: positive or negative cues, Am. Zool., 1991, vol. 31, pp. 797–807.Google Scholar
  54. 54.
    Young, C.M. and Chia, F.-S., Laboratory evidence for delay of larval settlement in response to a dominant competitor, Int. J. Invertebr. Reprod., 1981, vol. 3, pp. 221–226.CrossRefGoogle Scholar
  55. 55.
    Young, E.F., Bigg, G.R., Grant, A., et al., A modelling study of environmental influences on bivalve settlement in The Wash, England, Mar. Ecol; Progr. Ser., 1998, vol. 172, pp. 197–214.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. V. Khalaman
    • 1
  • N. M. Korchagina
    • 2
  • A. Yu. Komendantov
    • 1
  1. 1.Zoological InstituteRussian Academy of Sciences, White Sea Biological StationSt. PetersburgRussia
  2. 2.Chair of Embryology, Faculty of Biology and PedologySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations