Skip to main content
Log in

Spatially Inhomogeneous Structures in a Surface-Doped Lithium Niobate Crystal for Light Beam Transformation

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Spatially inhomogeneous structures (SIS) are important to realize the integrated optical devices transmitting and processing light signals. Nowadays, there are several methods used to create such structures with different characteristics and topologies. However, research on the methods of forming and modifying the characteristics of these structures continues to this day. In this work, we create and study SIS in a lithium niobate crystal surface-doped with copper ions. The results prove that SIS can be created by the point-by-point method using a continuous-wave frequency-doubled YAG:Nd3+ laser. The realized structures were formed as diffraсtion and waveguide optical elements with different characteristics and topologies. It is demonstrated that we can change the refractive index up to 10–3 by the point-by-point illumination of an X‑cut lithium niobate crystal during the structure formation. The properties of the fabricated structures were investigated by diffraction analysis, laser interferometry, and the optical probing method using He–Ne laser radiation. On the formed diffraction structures (DSs), the far-field diffraction patterns (DPs) show that the light power transfers from the incident radiation to first-order maxima. The first-order maxima intensity can exceed the intensity of the zero-order maximum up to several times. The near-field study after the excitation of waveguide structures (WSs) shows that they exhibit the properties of mode filters. The point-by-point method of forming SIS may be useful for creating integrated optical circuits and modifying the characteristics of optoelectronic and photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Bazzan, M. and Sada, C., Appl. Phys. Rev., 2015, vol. 2, no. 4, p. 040603. https://doi.org/10.1063/1.4931601

    Article  CAS  ADS  Google Scholar 

  2. Chen, F. and Vázquez de Aldana, J.R., Laser Photonics Rev., 2013, vol. 8, no. 2, p. 1. https://doi.org/10.1002/lpor.201300025

    Article  CAS  Google Scholar 

  3. Xu, X., Wang, T., Chen, P., et al., Nature, 2022, vol. 609, 496. https://doi.org/10.1038/s41586-022-05042-z

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Aparin, M.D., Baluyan, T.G., Sharipova, M.I., et al., Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 6, p. 710. https://doi.org/10.3103/S1062873823701976

    Article  CAS  Google Scholar 

  5. Vitukhnovsky, A.G., Kolymagin, D.A., Gritsienko, A.V., et al., Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 11, p. 1. https://doi.org/10.3103/S1062873823704452

    Article  Google Scholar 

  6. Gubanov, V.A., Kruglyak, V.V., and Sadovnikov, A.V., Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 3, p. 362. https://doi.org/10.3103/S1062873822701246

    Article  CAS  Google Scholar 

  7. Serov, Y.M., Galimov, A.I., and Toropov, A.A., Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 6, p. 776. https://doi.org/10.3103/S1062873823702258

    Article  CAS  Google Scholar 

  8. Nikitin, P.A., Bull. Russ. Acad. Sci.: Phys., 2023, vol. 87, no. 11, p. 1755. https://doi.org/10.3103/S1062873823704026

    Article  CAS  Google Scholar 

  9. Kulchitsky, N.A., Naumov, A.V., and Startsev, V.V., Photonics Russ., 2022, vol. 16, no. 1, p. 22. https://doi.org/10.22184/1993-7296.FRos.2022.16.1.22.36

    Article  Google Scholar 

  10. Vatnik, I.D., Gorbunov, O.A., and Churkin, D.V., JETP Lett., 2023, vol. 118, no. 5, p. 315. https://doi.org/10.31857/S1234567823170020

    Article  CAS  ADS  Google Scholar 

  11. Liu, Y. and Yang, H., High-Speed Optical Transceivers. Integrated Circuits Designs and Optical Devices Techniques, Singapore: World Scientific, 2006.

    Book  Google Scholar 

  12. Petrov, M.P., Stepanov, S.I., and Khomenko, A.V., Photorefractive Crystals in Coherent Optical Systems, Heidelberg: Springer, 2013.

    Google Scholar 

  13. Volk, T. and Wöhlecke, M., Lithium Niobate: Defects, Photorefraction, and Ferroelectric Switching, Heidelberg: Springer, 2008.

    Google Scholar 

  14. Jia, Y. and Chen, F., APL Photonics, 2023, vol. 8, no. 9, p. 090901. https://doi.org/10.1063/5.0160067

  15. Davydov, S.A., Trenikhin, P.A., Shandarov, V.M., Shandarova, K.V., Kip, D., Rueter, Ch., and Chen, F., Phys. Wave Phenom., 2010, vol. 18, no. 1, p. 1. https://doi.org/10.3103/s1541308x10010012

    Article  ADS  Google Scholar 

  16. Chen, Ch., Lu, Q., Akhmadaliev, Sh., and Zhou, Sh., Opt. Laser Technol., 2020, vol. 126, p. 106128. https://doi.org/10.1016/j.optlastec.2020.106128

    Article  CAS  Google Scholar 

  17. Courjal, N., Bernal, M.-P., Caspar, A., et al., Lithium Niobate Optical Waveguides and Microwaveguides, Emerging Waveguide Technology, London: InTech, 2018, chapter 8. https://doi.org/10.5772/intechopen.76798

  18. Horn, W., Kroesen, S., Herrmann, J., Imbrock, J., and Denz, C., Opt. Express, 2012, vol. 20, no. 24, p. 26922. https://doi.org/10.1364/OE.20.026922

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Mambetova, K.M., Shandarov, S.M., Orlikov, L.N., Arestov, S.I., Smirnov, S.V., Serebrennikov, L.Ya., and Krakovskii, V.A., Opt. Spectrosc., 2019, vol. 126, no. 6, p. 781. https://doi.org/10.1134/S0030400X1906016X

    Article  CAS  ADS  Google Scholar 

  20. Bezpaly A.D., Bykov V.I., and Mandel A.E., Optoelectron., Instrum., Data Process. 2022, vol. 58, p. 147. https://doi.org/10.3103/S8756699022020017

    Article  ADS  Google Scholar 

  21. Voronov, V.V., Kuzminov, Yu.S., and Osiko, V.V., Sov. J. Quantum Electron., 1976, vol. 3, no. 10, p. 2101. https://doi.org/10.1070/QE1976v006n10ABEH011902

    Article  CAS  Google Scholar 

  22. Bezpaly, A.D., Kapustin, V.V., and Mandel, A.E., Certificate of the State Registration of the Computer Program “Wavefront Visualizer” no. 2021661646, 2021.

  23. Bezpaly, A.D. and Shandarov, V.M., KnE Eng., 2018, vol. 2018, p. 147. https://doi.org/10.18502/keg.v3i4.2237

    Article  Google Scholar 

Download references

Funding

The work was carried out as a part of strategic academic leadership program “Priority 2030” (subproject Pr2030-Nauka SCH/SP1/B/8) and with the support of the Innovation Promotion Fund within the framework of the UMNIK program (project under contract no. 18233GU/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Bezpaly.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezpaly, A.D., Mandel, A.E. & Bykov, V.I. Spatially Inhomogeneous Structures in a Surface-Doped Lithium Niobate Crystal for Light Beam Transformation. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 3), S356–S363 (2023). https://doi.org/10.1134/S106287382370569X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106287382370569X

Keywords:

Navigation