Skip to main content
Log in

Grid Plasma Cathodes: History, Status, Prospects

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Some physical principles and design solutions that were used in the creation and modernization of electron sources with grid plasma emitters and which made it possible to improve their parameters and operational properties are considered. As an example, the main characteristics of modernized low-energy (up to 25 keV), medium-energy (up to 100 keV) and relatively high-energy (up to 200 keV) electron sources with grid plasma emitters are given, which are distinguished by a unique set of basic parameters, which allows them to be used both in scientific, and for technological purposes. The prospects for further development of such sources are shown and the scope of their application is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Belyuk, S.I., Gruzdev, V.A., Zherdev, Yu.I., Kazmin, G.S., Kovalchuk, B.M., Kreindel, Yu.E., Mozgunov, K.A., Filonov, A.G., and Shchelokov, A.V., Prib. Tekh. Eksp., 1975, vol. 3, p. 30.

    Google Scholar 

  2. Kazmin, G.S., Kreindel, Yu.E., and Shchelokov, A.V., in Razrabotka i primenenie istochnikov intensivnykh elektronnykh puchkov (Development and Application of Sources of Intense Electron Beams), Novosibirsk: Nauka, 1976, p. 106.

  3. Kazmin, G.S., Koval, N.N., Kreindel, Yu.E., Tol-kachev, V.S., and Shchanin, P.M., Prib. Tekh. Eksp., 1977, vol. 4, p. 19.

    Google Scholar 

  4. Zlobina, A.F., Kazmin, G.S., Koval, N.N., and Kreindel, Yu.E., Zh. Tekh. Fiz., 1980, vol. 50, no. 6, p. 1203.

    CAS  Google Scholar 

  5. Bugaev, S.P., Kreindel, Yu.E., and Shchanin, P.M., Prib. Tekh. Eksp., 1980, vol. 1, p. 7.

    Google Scholar 

  6. Gavrilov, N.V., Kovalchuk, B.M., Kreindel, Yu.E., et al., Prib. Tekh. Eksp., 1981, vol. 3, p. 152.

    Google Scholar 

  7. Zharinov, A.V., Kovalenko, Yu.A., Roganov, I.S., and Tyuryukanov, P.M., Zh. Tekh. Fiz., 1986, vol. 56, no. 1, p. 66.

    Google Scholar 

  8. Zharinov, A.V., Kovalenko, Yu.A., Roganov, I.S., and Tyuryukanov, P.M., Zh. Tekh. Fiz., 1986, vol. 56, no. 4, p. 687.

    Google Scholar 

  9. Zlobina, A.F., Koval, N.N., Kreindel, Yu.E., and Schanin, P.N., J. Phys., 1979, vol. 40, no. 7, p. 7.

    Google Scholar 

  10. Koval, N.N. and Nigof, M.B., Prib. Tekh. Eksp., 1980, vol. 6, p. 121.

    Google Scholar 

  11. Gushenets, V.I., Koval, N.N., and Shchanin, P.M., Pis’ma Zh. Tekh. Fiz., 1990, vol. 16, no. 8, p. 12.

    Google Scholar 

  12. Vorobyov, M.S., Moskvin, P.V., Shin, V.I., Koval, N.N., Ashurova, K.T., S. Yu. Doroshkevich, Devyatkov, V.N., Torba, M.S., and Levanisov, V.A., Tech. Phys. Lett., 2021, vol. 47, p. 528. https://doi.org/10.1134/S1063785021050291

    Article  ADS  CAS  Google Scholar 

  13. Vorobyov, M.S., Moskvin, P.V., Shin, V.I., Koval, T.V., Devyatkov, V.N., Doroshkevich, S.Yu., Koval, N.N., Torba, M.S., and Ashurova, K.T., Tech. Phys., 2022, vol. 67, no. 6, p. 747. https://doi.org/10.21883/TP.2022.06.54422.14-22

    Article  Google Scholar 

  14. V. N. Devyatkov, and N. N. Koval, Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, p. 1373. https://doi.org/10.3103/S1062873819110091

    Article  CAS  Google Scholar 

  15. Devyatkov, V.N. and Koval, N.N., Proc. of 7th Int. Congress on Energy Fluxes and Radiation Effects, 2020, p. 160. https://doi.org/10.1109/EFRE47760.2020.9241906

  16. Vorobyov, M.S., Devyatkov, V.N., Koval, N.N., and Sulakshin, S.A., Russ. Phys. J., 2017, vol. 60, no. 8, p. 1386. https://doi.org/10.1007/s11182-017-1226-0

    Article  CAS  Google Scholar 

  17. Koval, N.N., Devyatkov, V.N., and Vorobyev, M.S., Russ. Phys. J., 2021, vol. 63, no. 10, p. 1651. https://doi.org/10.17223/00213411/63/10/7

    Article  Google Scholar 

  18. Vorobyov, M.S., Baksht, E.Kh., Koval, N.N., Tarasenko, V.F., Kozyrev, A.V., and Doroshkevich, S.Yu., Proc. 20th Int. Symposium on High-Current Electronics, 2018, p. 209. https://doi.org/10.1109/ISHCE.2018.8521216

  19. Gushenets, V.I., Bugaev, A.S., and Oks, E.M., Russ. Phys. J., 2018, vol. 60, p. 1515. https://doi.org/10.1007/s11182-018-1244-6

    Article  CAS  Google Scholar 

  20. Moskvin, P.V., Devyatkov, V.N., Vorobyov, M.S., Shin, V.I., Lopatin, I.V., Koval, N.N., Doroshkevich, S.Yu., and Torba, M.S., Vacuum, 2021, vol. 191, p. 110338.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

The work was supported by the grant of Russian Science Foundation (project no. 20-79-10015-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Koval.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval, N.N., Devyatkov, V.N. & Vorobyov, M.S. Grid Plasma Cathodes: History, Status, Prospects. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 2), S288–S293 (2023). https://doi.org/10.1134/S1062873823704749

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704749

Keywords:

Navigation