Skip to main content
Log in

Electron Runaway Conditions for a Gas Diode with a Cathode in the Form of the Taylor Cone

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Conditions for electron runaway in an air diode with a graphite cathode in the form of the Taylor cone, i.e., the cone with the opening angle of 98.6 deg, are studied experimentally and theoretically. The feature of the conical cathode with this opening angle is that the dynamics of free electrons radically changes for it: at larger angles, electrons are continuously accelerated across the entire gap; at smaller ones, they accelerate near the cathode and then decelerate at the periphery. For various interelectrode distances, the threshold voltages applied to the gap at which runaway electrons are detected have been determined. It has been demonstrated that the experimental voltage values are consistent with the results of calculations of the electron motion in the Laplacian (i.e., not distorted by the influence of space charge) electric field within the framework of both dynamic and kinetic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Wilson, C.T.R., Proc. Phys. Soc. London, 1924, vol. 37, no. 1, p. 32D. https://doi.org/10.1088/1478-7814/37/1/314

    Article  Google Scholar 

  2. Dreicer, H., Phys. Rev., 1959, vol. 115, no. 2, p. 238. https://doi.org/10.1103/PhysRev.115.238

    Article  MathSciNet  CAS  ADS  Google Scholar 

  3. Gurevich, A.V., Sov. Phys. JETP, 1960, vol. 12, no. 5, p. 904.

    Google Scholar 

  4. Frankel, S., Highland, V., Sloan, T., Van Dyck, O., and Wales, W., Nucl. Instrum. Methods, 1966, vol. 44, no. 2, p. 345. https://doi.org/10.1016/0029-554X(66)90172-8

    Article  CAS  ADS  Google Scholar 

  5. Stankevich, Yu.L. and Kalinin, N.S., Sov. Phys. Dokl., 1968, vol. 12, p. 1042.

    ADS  Google Scholar 

  6. Mesyats, G.A., Bychkov, Yu.I., and Kremnev, V.V., Sov. Phys. Usp., 1972, vol. 15, no. 3, p. 282. https://doi.org/10.1070/PU1972v015n03ABEH004969

    Article  ADS  Google Scholar 

  7. Babich, L.P., Loiko, T.V., and Tsukerman, V.A., Sov. Phys. Usp., 1990, vol. 33, no. 7, p. 521. https://doi.org/10.1070/PU1990v033n07ABEH002606

    Article  ADS  Google Scholar 

  8. Tarasenko, V.F., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., Orlovskii, V.M., and Alekseev, S.B., Tech. Phys. Lett., 2003, vol. 29, p. 879. https://doi.org/10.1134/1.1631351

    Article  CAS  ADS  Google Scholar 

  9. Alekseev, S.B., Orlovskii, V.M., and Tarasenko, V.F., Tech. Phys. Lett., 2003, vol. 29, p. 411. https://doi.org/10.1134/1.1579810

    Article  CAS  ADS  Google Scholar 

  10. Tarasenko, V.F., Orlovskii, V.M., and Shunailov, S.A., Russ. Phys. J., 2003, vol. 46, p. 325. https://doi.org/10.1023/A:1025450230879

    Article  CAS  Google Scholar 

  11. Mesyats, G.A., Yalandin, M.I., Sharypov, K.A., Shpak, V.G., and Shunailov, S.A., IEEE Trans. Plasma Sci., 2008, vol. 36, no. 5, p. 2497. https://doi.org/10.1109/TPS.2008.2005884

    Article  ADS  Google Scholar 

  12. Mesyats, G.A., Shpak, V.G., Shunailov, S.A., and Yalandin, M.I., Tech. Phys. Lett., 2008, vol. 34, no. 2, p. 169. https://doi.org/10.1134/S1063785008020259

    Article  CAS  ADS  Google Scholar 

  13. Tarasenko, V.F., Rybka, D.V., Burachenko, A.G., Lomaev, M.I., and Balzovsky, E.V., Rev. Sci. Instrum., 2012, vol. 83, no. 8, p. 086106. https://doi.org/10.1063/1.4746378

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Tarasenko, V.F. and Rybka, D.V., High Voltage, 2016, vol. 1, no. 1, p. 43. https://doi.org/10.1049/hve.2016.0007

    Article  Google Scholar 

  15. Akishev, Y., Aponin, G., Karalnik, V., Petryakov, A., and Trushkin, N., J. Phys. D: Appl. Phys., 2018, vol. 51, no. 39, p. 394003. https://doi.org/10.1088/1361-6463/aad704

    Article  CAS  Google Scholar 

  16. Mesyats, G.A., Yalandin, M.I., Zubarev, N.M., Sadykova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Ulmaskulov, M.R., Zubareva, O.V., Kozyrev, A.V., and Semeniuk, N.S., Appl. Phys. Lett., 2020, vol. 116, p. 063501. https://doi.org/10.1063/1.5143486

    Article  CAS  ADS  Google Scholar 

  17. Tarasenko, V.F., Beloplotov, D.V., and Sorokin, D.A., Tech. Phys., 2022, vol. 67, no. 5, p. 586. https://doi.org/10.21883/TP.2022.05.53674.317-21

    Article  Google Scholar 

  18. Mesyats, G.A., Osipenko, E.A., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., and Zubarev, N.M., IEEE Electron Device Lett., 2022, vol. 43, no. 4, p. 627. https://doi.org/10.1109/LED.2022.3155173

    Article  CAS  ADS  Google Scholar 

  19. Lobanov, L.N., Mesyats, G.A., Osipenko, E.A., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., and Zubarev, N.M., IEEE Electron Device Lett., 2023, vol. 44, no. 10, p. 1748. https://doi.org/10.1109/LED.2023.3301867

    Article  CAS  ADS  Google Scholar 

  20. Kozyrev, A., Kozhevnikov, V., Lomaev, M., Sorokin, D., Semeniuk, N., and Tarasenko, V., Europhys. Lett., 2016, vol. 114, p. 45001. https://doi.org/10.1209/0295-5075/114/45001

    Article  CAS  ADS  Google Scholar 

  21. Kozhevnikov, V.Yu., Kozyrev, A.V., and Semeniuk, N.S., Russ. Phys. J., 2017, vol. 60, p. 1425. https://doi.org/10.1007/s11182-017-1232-2

    Article  Google Scholar 

  22. Naidis, G.V., Tarasenko, V.F., Babaeva, N.Yu., and Lomaev, M.I., Plasma Sources Sci. Technol., 2018, vol. 27, p. 013001. https://doi.org/10.1088/1361-6595/aaa072

    Article  CAS  ADS  Google Scholar 

  23. Zubarev, N.M. and Ivanov, S.N., Plasma Phys. Rep., 2018, vol. 44, no. 4, p. 445. https://doi.org/10.1134/S1063780X18040104

    Article  ADS  Google Scholar 

  24. Zubarev, N.M. and Mesyats, G.A., JETP Lett., 2021, vol. 113, no. 4, p. 259. https://doi.org/10.1134/S0021364021040123

    Article  CAS  ADS  Google Scholar 

  25. Tarasenko, V., Plasma Sources Sci. Technol., 2020, vol. 29, no. 3, p. 034001. https://doi.org/10.1088/1361-6595/ab5c57

    Article  CAS  ADS  Google Scholar 

  26. Zubarev, N.M., Kozhevnikov, V.Yu., Kozyrev, A.V., Mesyats, G.A., Semeniuk, N.S., Sharypov, K.A., Shunailov, S.A., and Yalandin, M.I., Plasma Sources Sci. Technol., 2020, vol. 29, no. 12, p. 125008. https://doi.org/10.1088/1361-6595/abc414

    Article  CAS  ADS  Google Scholar 

  27. Ivanov, S.N., Lisenkov, V.V., and Mamontov, Yu.I., Plasma Sources Sci. Technol., 2021, vol. 30, p. 075021. https://doi.org/10.1088/1361-6595/abf31f

    Article  CAS  ADS  Google Scholar 

  28. Dwyer, J.R., Smith, D.M., and Cummer, S.A., Space Sci. Rev., 2012, vol. 173, p. 133. https://doi.org/10.1007/s11214-012-9894-0

    Article  CAS  ADS  Google Scholar 

  29. Babich, L.P., High-Energy Phenomena in Electric Discharges in Dense Gases, Arlington, TX: Futurepast, 2003.

    Google Scholar 

  30. Zubarev, N.M., Yalandin, M.I., Mesyats, G.A., Barengolts, S.A., Sadykova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., and Zubareva, O.V., J. Phys. D: Appl. Phys., 2018, vol. 51, p. 284003. https://doi.org/10.1088/1361-6463/aac90a

    Article  CAS  Google Scholar 

  31. Mesyats, G.A., Pedos, M.S., Rukin, S.N., Rostov, V.V., Romanchenko, I.V., Sadykova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Ul’masculov, M.R., and Yalandin, M.I., Appl. Phys. Lett., 2018, vol. 112, 163501. https://doi.org/10.1063/1.5025751

    Article  CAS  ADS  Google Scholar 

  32. Beloplotov, D.V., Tarasenko, V.F., Shklyaev, V.A., and Sorokin, D.A., JETP Lett., 2021, vol. 113, p. 129. https://doi.org/10.1134/S0021364021020053

    Article  CAS  ADS  Google Scholar 

  33. Beloplotov, D.V., Tarasenko, V.F., and Sorokin, D.A., JETP Lett., 2022, vol. 116, p. 293. https://doi.org/10.1134/S0021364022601580

    Article  CAS  ADS  Google Scholar 

  34. Zubarev, N.M., Mesyats, G.A., and Yalandin, M.I., JETP Lett., 2017, vol. 105, no. 8, p. 537. https://doi.org/10.1134/S002136401708015X

    Article  CAS  ADS  Google Scholar 

  35. Zubarev, N.M., Yalandin, M.I., and Zubareva, O.V., Dokl. Phys., 2023, vol. 512, p. 5. https://doi.org/10.31857/S2686740023050140

    Article  Google Scholar 

  36. Taylor, G.I., Proc. R. Soc. London, Ser. A, 1964, vol. 280, no. 1382, p. 383. https://doi.org/10.1098/rspa.1964.0151

    Article  ADS  Google Scholar 

  37. Zubarev, N.M., JETP Lett., 2001, vol. 73, p. 544. https://doi.org/10.1134/1.1387524

    Article  CAS  ADS  Google Scholar 

  38. Suvorov, V.G. and Zubarev, N.M., J. Phys. D: Appl. Phys., 2004, vol. 37, no. 2, p. 289. https://doi.org/10.1088/0022-3727/37/2/019

    Article  CAS  ADS  Google Scholar 

  39. Gashkov, M.A., Zubarev, N.M., Zubareva, O.V., Mesyats, G.A., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., and Yalandin, M.I., JETP Lett., 2021, vol. 113, no. 6, p. 370. https://doi.org/10.1134/S0021364021060059

    Article  CAS  ADS  Google Scholar 

  40. Yalandin, M.I., Lobanov, L.N., Osipenko, E.A., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Ginzburg, N.S., and Zotova, I.V., IEEE Trans. Instrum. Meas., 2023, vol. 72, p. 1008808. https://doi.org/10.1109/TIM.2023.3307183

    Article  CAS  Google Scholar 

  41. Shunailov, S.A., Yalandin, M.I., Sharypov, K.A., Kolomiets, M.D., Ul’masculov, M.R., Shpak, V.G., Rostov, V.V., and Mesyats, G.A., Vacuum, 2017, vol. 143, no. 9, p. 473. https://doi.org/10.1016/j.vacuum.2017.03.012

    Article  CAS  ADS  Google Scholar 

  42. Shpak, V.G., Shunailov, S.A., Yalandin, M.I., and Dyadkov, A.N., Instrum. Exp. Tech., 1993, vol. 36, no. 1, p. 106. https://inis.iaea.org/search/search.aspx?orig_ q=RN:25031539.

    Google Scholar 

  43. Yalandin, M.I., Lyubutin, S.K., Oulmascoulov, M.R., Rukin, S.N., Shpak, V.G., Shunailov, S.A., and Slovikovsky, B.G., IEEE Trans. Plasma Sci., 2002, vol. 30, no. 5, p. 1700. https://doi.org/10.1109/TPS.2002.805383

    Article  ADS  Google Scholar 

  44. Sharypov, K.A., Ul’masculov, M.R., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., Mesyats, G.A., Rostov, V.V., and Kolomiets, M.D., Rev. Sci. Instrum., 2014, vol. 85, p. 125104. https://doi.org/10.1063/1.4902853

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Tiunov, M.A., Fomel, B.M., and Yakovlev, V.P., SAM—An interactive code for electron gun evaluation, Budker Inst. Nucl. Phys., Tech. Rep. no. INP-89-159, Novosibirsk, 1989.

  46. Peterson, L.R. and Green, A., E.S., J. Phys. B: At. Mol. Phys., 1968, vol. 1, no. 6, p. 1131. https://doi.org/10.1088/0022-3700/1/6/317

    Article  ADS  Google Scholar 

  47. Bethe, H., Ann. Phys., 1930, vol. 397, no. 3, p. 325. https://doi.org/10.1002/andp.19303970303

    Article  Google Scholar 

  48. Zubarev, N.M., Zubareva, O.V., and Yalandin, M.I., Electronics, 2022, vol. 11, no. 17, p. 2771. https://doi.org/10.3390/electronics11172771

    Article  Google Scholar 

  49. Zubarev, N.M., Zubareva, O.V., and Yalandin, M.I., Tech. Phys. Lett., 2023, vol. 49, no. 18, p. 24. https://doi.org/10.21883/PJTF.2023.18.56173.19630

    Article  Google Scholar 

  50. Itikawa, Y., J. Phys. Chem. Ref. Data, 2006, vol. 35, no. 1, p. 31. https://doi.org/10.1063/1.1937426

    Article  CAS  ADS  Google Scholar 

  51. Mamontov, Y., Uimanov, I., Kozyrev, A., Zubarev, N., and Semeniuk, N., Proc. 7th Int. Congress on Energy Fluxes and Radiation Effects, Tomsk, 2020, p. 140. https://doi.org/10.1109/EFRE47760.2020.9242135

  52. Belomyttsev, S.Y., Romanchenko, I.V., and Rostov, V.V., Russ. Phys. J., 2008, vol. 51, no. 3, p. 299. https://doi.org/10.1007/s11182-008-9052-z

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, supplying the Tektronix TDS6604B oscilloscope from the Collective Use Center for the measurements and earlier developed pulsed power equipment (Topic no. 122011200367-7) for the experiments.

Funding

The presented study was funded by the Russian Science Foundation, grant no. 23-19-00053, https://rscf.ru/project/23-19-00053/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zubarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gashkov, M.A., Kozyrev, A.V., Lobanov, L.N. et al. Electron Runaway Conditions for a Gas Diode with a Cathode in the Form of the Taylor Cone. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 2), S180–S188 (2023). https://doi.org/10.1134/S1062873823704580

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704580

Keywords:

Navigation