Skip to main content
Log in

Threshold Voltage for Electron Runaway in a Gas Diode with a Needle Cathode

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The conditions are analyzed for electron runaway in a gas diode in a strongly inhomogeneous electric field due to the use of a needle cathode. It is shown that the voltage applied to the gap, which is required for electron runaway, tends to a finite value with decreasing radius of the needle tip. An analytical expression is obtained for such a threshold voltage; it is determined only by the gap width and the gas properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Dreicer, H., Phys. Rev., 1959, vol. 115, no. 2, p. 238. https://doi.org/10.1103/PhysRev.115.238

    Article  MathSciNet  CAS  ADS  Google Scholar 

  2. Gurevich, A.V., Sov. Phys. JETP, 1960, vol. 12, no. 5, p. 904.

    Google Scholar 

  3. Stankevich, Yu.L. and Kalinin, N.S., Sov. Phys. Dokl., 1968, vol. 12, p. 1042.

    ADS  Google Scholar 

  4. Mesyats, G.A., Bychkov, Yu.I., and Kremnev, V.V., Sov. Phys. Usp., 1972, vol. 15, no. 3, p. 282. https://doi.org/10.1070/PU1972v015n03ABEH004969

    Article  ADS  Google Scholar 

  5. Babich, L.P., Loiko, T.V., and Tsukerman, V.A., Sov. Phys. Usp., 1990, vol. 33, no. 7, p. 521. https://doi.org/10.1070/PU1990v033n07ABEH002606

    Article  ADS  Google Scholar 

  6. Tarasenko, V.F., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., Orlovskii, V.M., and Alekseev, S.B., Tech. Phys. Lett., 2003, vol. 29, p. 879. https://doi.org/10.1134/1.1631351

    Article  CAS  ADS  Google Scholar 

  7. Mesyats, G.A., Yalandin, M.I., Reutova, A.G., Sharypov, K.A., Shpak, V.G., and Shunailov, S.A., Plasma Phys. Rep., 2012, vol. 38, p. 29. https://doi.org/10.1134/S1063780X11110055

    Article  CAS  ADS  Google Scholar 

  8. Mesyats, G.A., Yalandin, M.I., Zubarev, N.M., Sadykova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Ulmaskulov, M.R., Zubareva, O.V., Kozyrev, A.V., and Semeniuk, N.S., Appl. Phys. Lett., 2020, vol. 116, p. 063501. https://doi.org/10.1063/1.5143486

    Article  CAS  ADS  Google Scholar 

  9. Tarasenko, V., Plasma Sources Sci. Technol., 2020, vol. 29, no. 3, p. 034001. https://doi.org/10.1088/1361-6595/ab5c57

    Article  CAS  ADS  Google Scholar 

  10. Zubarev, N.M. and Mesyats, G.A., JETP Lett., 2021, vol. 113, no. 4, p. 259. https://doi.org/10.1134/S0021364021040123

    Article  CAS  ADS  Google Scholar 

  11. Zubarev, N.M., Kozhevnikov, V.Yu., Kozyrev, A.V., Mesyats, G.A., Semeniuk, N.S., Sharypov, K.A., Shunailov, S.A., and Yalandin, M.I., Plasma Sources Sci. Technol., 2020, vol. 29, no. 12, p. 125008. https://doi.org/10.1088/1361-6595/abc414

    Article  CAS  ADS  Google Scholar 

  12. Naidis, G.V., Tarasenko, V.F., Babaeva, N.Yu., and Lomaev, M.I., Plasma Sources Sci. Technol., 2018, vol. 27, p. 013001. https://doi.org/10.1088/1361-6595/aaa072

    Article  CAS  ADS  Google Scholar 

  13. Ivanov, S.N., Lisenkov, V.V., and Mamontov, Yu.I., Plasma Sources Sci. Technol., 2021, vol. 30, p. 075021. https://doi.org/10.1088/1361-6595/abf31f

    Article  CAS  ADS  Google Scholar 

  14. Kozhevnikov, V.Yu., Kozyrev, A.V., and Semeniuk, N.S., Russ. Phys. J., 2017, vol. 60, p. 1425. https://doi.org/10.1007/s11182-017-1232-2

    Article  Google Scholar 

  15. Ivanov, S.N., Plasma Sources Sci. Technol., 2022, vol. 31, p. 055001. https://doi.org/10.1088/1361-6595/ac6693

    Article  ADS  Google Scholar 

  16. Dwyer, J.R., Smith, D.M., and Cummer, S.A., Space Sci. Rev., 2012, vol. 173, p. 133. https://doi.org/10.1007/s11214-012-9894-0

    Article  CAS  ADS  Google Scholar 

  17. Babich, L.P., High-Energy Phenomena in Electric Discharges in Dense Gases, Arlington, TX: Futurepast, 2003.

    Google Scholar 

  18. Zubarev, N.M., Yalandin, M.I., Mesyats, G.A., Barengolts, S.A., Sadykova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., and Zubareva, O.V., J. Phys. D: Appl. Phys., 2018, vol. 51, p. 284003. https://doi.org/10.1088/1361-6463/aac90a

    Article  CAS  Google Scholar 

  19. Beloplotov, D.V., Tarasenko, V.F., Sorokin, D.A., and Shklyaev, V.A., Tech. Phys., 2021, vol. 66, no. 4, p. 548. https://doi.org/10.1134/S1063784221040046

    Article  CAS  Google Scholar 

  20. Mesyats, G.A., Osipenko, E.A., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., and Zubarev, N.M., IEEE Electron Device Lett., 2022, vol. 43, no. 4, p. 627. https://doi.org/10.1109/LED.2022.3155173

    Article  CAS  ADS  Google Scholar 

  21. Mesyats, G.A., Pedos, M.S., Rukin, S.N., Rostov, V.V., Romanchenko, I.V., Sadykova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Ul’masculov, M.R., and Yalandin, M.I., Appl. Phys. Lett., 2018, vol. 112, p. 163501. https://doi.org/10.1063/1.5025751

    Article  CAS  ADS  Google Scholar 

  22. Tarasenko, V.F., Beloplotov, D.V., and Sorokin, D.A., Tech. Phys., 2022, vol. 67, no. 5, p. 586. https://doi.org/10.21883/TP.2022.05.53674.317-21

    Article  Google Scholar 

  23. Zubarev, N.M., Mesyats, G.A., and Yalandin, M.I., JETP Lett., 2017, vol. 105, no. 8, p. 537. https://doi.org/10.1134/S002136401708015X

    Article  CAS  ADS  Google Scholar 

  24. Mamontov, Y.I., Zubarev, N.M., and Uimanov, I.V., IEEE Trans. Plasma Sci., 2021, vol. 49, no. 9, p. 2589. https://doi.org/10.1109/TPS.2021.3082693

    Article  ADS  Google Scholar 

  25. Zubarev, N.M., Zubareva, O.V., and Yalandin, M.I., Electronics, 2022, 11, no. 17, p. 2771. https://doi.org/10.3390/electronics11172771

    Article  Google Scholar 

  26. Zubarev, N.M., Zubareva, O.V., and Yalandin, M.I., Tech. Phys. Lett., 2023, vol. 49, no. 18, p. 24. https://doi.org/10.21883/PJTF.2023.18.56173.19630

    Article  Google Scholar 

  27. Peterson, L.R., and Green, A.E.S., J. Phys. B: At. Mol. Phys., 1968, vol. 1, no. 6, p. 1131. https://doi.org/10.1088/0022-3700/1/6/317

    Article  ADS  Google Scholar 

  28. Bethe, H., Ann. Phys., 1930, vol. 397, no. 3, p. 325. https://doi.org/10.1002/andp.19303970303

    Article  Google Scholar 

  29. Schonland, B.F.J., Proc. R. Soc. London, A, 1923, vol. 104, no. 725, p. 235. https://doi.org/10.1098/rspa.1925.0067

    Article  CAS  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Zubarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalandin, M.I., Zubarev, N.M. & Zubareva, O.V. Threshold Voltage for Electron Runaway in a Gas Diode with a Needle Cathode. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 2), S175–S179 (2023). https://doi.org/10.1134/S1062873823704579

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704579

Keywords:

Navigation