Skip to main content
Log in

Simulation of High Current Vacuum Arc with Hybrid Cathode Attachment

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A model of the hybrid cathode attachment of a high-current vacuum arc with a characteristic average current density at the cathode of 105–106 A/cm2, in which multiple rapidly moving cathode spots and a quasi-stationary thermal spot coexist, is proposed. The numerical simulation of the formation and expansion of a plasma jet with a hybrid cathode attachment showed that the model can explain the sharp increase in the mass of the plasma jet and cathode erosion observed in experiments on magnetic implosion. Characteristic signs of the occurrence of hybrid cathode attachment, which can be verified experimentally, are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Mesyats, G.A., IEEE Trans. Plasma Sci., 1995, vol. 23, p. 879. https://doi.org/10.1109/27.476469

    Article  CAS  ADS  Google Scholar 

  2. Anders, A., Cathodic Arcs: From Fractal Spots to Energetic Condensation, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-79108-1

  3. Slade, P.G., The Vacuum Interrupter: Theory, Design, and Application, London: CRC, 2018.

    Book  Google Scholar 

  4. Schade, E., IEEE Trans. Plasma Sci., 2005, vol. 3, p. 384. https://doi.org/10.1109/TPS.2005.856530

    Article  CAS  Google Scholar 

  5. Barengolts, S.A., Mesyats, G.A., and Shmelev, D.L., J. Exp. Theor. Phys., 2001, vol. 93, p. 1065. https://doi.org/10.1134/1.1427117

    Article  CAS  ADS  Google Scholar 

  6. Boxman, R.L., Goldsmith, S., Izraeli, I., and Shalev, S., IEEE Trans. Plasma Sci., 1983, vol. PS-11, p. 138. https://doi.org/10.1109/TPS.1983.4316241

    Article  CAS  ADS  Google Scholar 

  7. Mesyats, G.A. and Barengolts, S.A., IEEE Trans. Plasma Sci., 2001, vol. 29, p. 704. https://doi.org/10.1109/27.964458

    Article  ADS  Google Scholar 

  8. Schade, E. and Shmelev, D.L., IEEE Trans. Plasma Sci., 2003, vol. 31, p. 890. https://doi.org/10.1109/TPS.2003.818436

    Article  CAS  ADS  Google Scholar 

  9. Anders, A., Oks, E.M., Yushkov, G.Yu., Savkin, K.P., Brown, I.G., and Nikolaev, A.G., IEEE Trans. Plasma Sci., 2005, vol. 33, p. 1532. https://doi.org/10.1109/TPS.2005.856502

    Article  ADS  Google Scholar 

  10. Haas, W. and Hartmann, W., IEEE Trans. Plasma Sci., 1999, vol. 27, p. 954. https://doi.org/10.1109/TPS.2005.856502

    Article  ADS  Google Scholar 

  11. Shmelev, D.L. and Delachaux, T., IEEE Trans. Plasma Sci., 2009, vol. 37, p. 1379. https://doi.org/10.1109/TPS.2009.2024422

    Article  ADS  Google Scholar 

  12. Shmelev, D.L., Delachaux, T., and Schade, E., IEEE Trans. Plasma Sci., 2013, vol. 41, p. 384. https://doi.org/10.1109/TPS.2012.2234766

    Article  ADS  Google Scholar 

  13. Ecker, G. and Paulus, I., IEEE Trans. Plasma Sci., 1988, vol. 16, p. 348. https://doi.org/10.1109/27.3841

    Article  ADS  Google Scholar 

  14. Nemchinsky, V., IEEE Trans. Plasma Sci., 2020, vol. 48, p. 2571. https://doi.org/10.1109/TPS.2020.2999418

    Article  CAS  Google Scholar 

  15. Rousskikh, A.G., Zhigalin, A.S., Oreshkin, V.I., Chaikovsky, S.A., Labetskaya, N.A., and Baksht, R.B., Phys. Plasmas, 2011, vol. 18, p. 092707. https://doi.org/10.1063/1.3640535

    Article  CAS  ADS  Google Scholar 

  16. Rousskikh, A.G., Artyomov, A.P., Zhigalin, A.S., Fedyunin, A.V., and Oreshkin, V.I., IEEE Trans. Plasma Sci., 2018, vol. 46, p. 3487. https://doi.org/10.1109/TPS.2018.2849205

    Article  CAS  ADS  Google Scholar 

  17. Shmelev, D.L., Zhigalin, A.S., Chaikovsky, S.A., Oreshkin, V.I., and Rousskikh, A.G., Phys. Plasmas, 2020, vol. 27, p. 092708. https://doi.org/10.1063/5.0010853

    Article  CAS  Google Scholar 

  18. Cherdizov, R.K., Baksht, R.B., Kokshenev, V.A., Oreshkin, V.I., Rousskikh, A.G., Shishlov, A.V., Shmelev, D.L., and Zhigalin, A.S., Plasma Phys. Controlled Fusion, 2021, vol. 64, p. 015011. https://doi.org/10.1088/1361-6587/ac35a5

    Article  ADS  Google Scholar 

  19. Zanner, F.J., Bertram, L.A., IEEE Trans. Plasma Sci., 1983, vol. PS-11, p. 223. https://doi.org/10.1109/TPS.1983.4316255

    Article  CAS  ADS  Google Scholar 

  20. Shmelev, D.L., Oreshkin, V.I., and Uimanov, I.V., IEEE Trans. Plasma Sci., 2019, vol. 47, p. 3478. https://doi.org/10.1109/TPS.2019.2905624

    Article  CAS  ADS  Google Scholar 

  21. Morozov, P.A., Punanov, I.F., Emlin, R.V., Muziukin, I.L., Chaikovsky, S.A., Uimanov, I.V., Shmelev, D.L., Zemskov, Y.A., and Mikhailov, P.S., J. Phys.: Conf. Ser., 2019, vol. 1393, p. 156401. https://doi.org/10.1088/1742-6596/1393/1/012015

    Article  CAS  Google Scholar 

  22. Muzyukin, I., Uimanov, I., Mikhailov, P., Shmelev, D., Chaikovsky, S., and Zemskov, Y., Proc. 7th Int. Congress on Energy Fluxes and Radiation Effects, 2000, p. 46. https://doi.org/10.1109/EFRE47760.2020.9242166

Download references

Funding

The research was supported by the Russian Science Foundation under grant no. 23-19-00360 (https:// rscf.ru/project/23-19-00360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Shmelev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shmelev, D.L., Barengolts, S.A. & Uimanov, I.V. Simulation of High Current Vacuum Arc with Hybrid Cathode Attachment. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 2), S169–S174 (2023). https://doi.org/10.1134/S1062873823704567

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704567

Keywords:

Navigation