Skip to main content
Log in

Formation of Thin Films of InSb on Pristine and Modified Si(111) Using Solid Phase Epitaxy

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The formation of thin films of indium antimonide on Si(111) from a stoichiometric mixture with a thickness of 32–48 nm was performed by solid-phase epitaxy (SPE) at a temperature of 320–380°C under ultrahigh vacuum conditions. It is shown that the use of an array of high-density InSb seed islands makes it possible to form a large-block epitaxial InSb film, while a solid-phase epitaxy from a mixture deposited on a clean surface produces a granular polycrystalline film. Based on the analysis of low energy electron diffraction patterns, X-ray diffraction data and Raman spectra, the stresses in the resulting films were determined: in the out of plane direction the films are weakly compressed by 0.1–0.14% while in the in-plane direction the epitaxial film is compressed by 1.33%. Thus, we show the possibility of forming practically relaxed InSb epitaxial films on Si(111) without the use of buffer of extraneous chemical elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Hopkinson, M., Martin, T., and Smowton, P., Semicond. Sci. Technol., 2013, vol. 28, p. 090301. https://doi.org/10.1088/0268-1242/28/9/090301

    Article  CAS  ADS  Google Scholar 

  2. Riel, H., Proc. Silicon Nanoelectronics Workshop, 2017, p. 1. https://doi.org/10.23919/SNW.2017.8242267

  3. Levinštejn, M.E., Handbook Series on Semiconductor Parameters, Singapore: World Sci., 1996.

    Book  Google Scholar 

  4. Boltar, K.O., Iakovleva, N.I., Lopukhin, A.A., and Vlasov, P.V., J. Commun. Technol. Electron., 2023, vol. 68, p. 316. https://doi.org/10.1134/S106422692303004X

    Article  CAS  Google Scholar 

  5. Mu, Q., Fan, F., Chen, S., Xu, S., Xiong, C., Zhang, X., Wang, X., and Chang, S., Photonics Res., 2019, vol. 7, p. 325. https://doi.org/10.1364/PRJ.7.000325

    Article  CAS  Google Scholar 

  6. Jankowski, J., Prokopowicz, R., Pytel, K., and El-Ahmar, S., IEEE Trans. Nucl. Sci., 2019, vol. 66, p. 926. https://doi.org/10.1109/TNS.2019.2912720

    Article  CAS  ADS  Google Scholar 

  7. Chen, Y., Huang, S., Pan, D., Xue, J., Zhang, L., Zhao, J., and Xu, H.Q., npj 2D Mater Appl., 2021, vol. 5, p. 3. https://doi.org/10.1038/s41699-020-00184-y

  8. Rao, B.V., Gruznev, D., Tambo, T., and Tatsuyama, C., Semicond. Sci. Technol., 2001, vol. 16, p. 216. https://doi.org/10.1088/0268-1242/16/4/305

    Article  CAS  ADS  Google Scholar 

  9. Liu, W.K., Winesett, J., Ma, W., Zhang, X., Santos, M.B., Fang, X.M., and McCann, P.J., J. Appl. Phys., 1997, vol. 81, p. 1708. https://doi.org/10.1063/1.364028

    Article  CAS  ADS  Google Scholar 

  10. Farag, A.A.M., Ashery, A., and Terra, F.S., Microelectron. J., 2008, vol. 39, p. 253. https://doi.org/10.1016/j.mejo.2007.10.029

    Article  CAS  Google Scholar 

  11. Rao, B.V., Okamoto, T., Shinmura, A., Gruznev, D., Mori, M., Tambo, T., and Tatsuyama, C., Appl. Surf. Sci., 2000, vols. 159–160, p. 335. https://doi.org/10.1016/S0169-4332(00)00074-X

    Article  ADS  Google Scholar 

  12. Khamseh, S., Yasui, Y., Nakayama, K., Nakatani, K., Mori, M., and Maezawa, K., Jpn. J. Appl. Phys., 2011, vol. 50, p. 04DH13. https://doi.org/10.1143/JJAP.50.04DH13

    Article  CAS  Google Scholar 

  13. Chyi, J.-I., Biswas, D., Iyer, S.V., Kumar, N.S., Morkoç, H., Bean, R., Zanio, K., H.-Y. Lee, and Chen, H., Appl. Phys. Lett., 1989, vol. 54, p. 1016. https://doi.org/10.1063/1.100784

    Article  CAS  ADS  Google Scholar 

  14. Rao, B.V., Gruznev, D., Tambo, T., and Tatsuyama, C., J. Crystal Growth, 2001, vol. 224, p. 316. https://doi.org/10.1016/S0022-0248(01)01018-1

    Article  CAS  ADS  Google Scholar 

  15. Chusovitina, S.V., Subbotin, E.Y., Chusovitin, E.A., Goroshko, D.L., Dotsenko, S.A., Pyachin, S.A., Gerasimenko, A.V., and Gutakovskii, A.K., Jpn. J. Appl. Phys., 2023, vol. 62, p. SD1005. https://doi.org/10.35848/1347-4065/aca4d8

    Article  Google Scholar 

  16. Goroshko, D., Chusovitin, E., Subbotin, E., and Chusovitina, S., Semicond. Sci. Technol., 2020, vol. 35, p. 10LT01. https://doi.org/10.1088/1361-6641/aba0ca

    Article  CAS  Google Scholar 

  17. Hirayama, H., Baba, S., and Kinbara, A., Appl. Surf. Sci., 1988, vols. 33–34, p. 193. https://doi.org/10.1016/0169-4332(88)90306-6

    Article  ADS  Google Scholar 

  18. Bolmont, D., Chen, P., Sébenne, C.A., and Proix, F., Surf. Sci., 1984, vol. 137, p. 280. https://doi.org/10.1016/0039-6028(84)90689-7

    Article  CAS  ADS  Google Scholar 

  19. Paliwal, V.K., Vedeshwar, A.G., and Shivaprasad, S.M., Pure Appl. Chem., 2002, vol. 74, p. 1651. https://doi.org/10.1351/pac200274091651

    Article  CAS  Google Scholar 

  20. Shivaprasad, S.M., Paliwal, V.K., and Chaudhuri, A., Appl. Surf. Sci., 2004, vol. 237, p. 93. https://doi.org/10.1016/j.apsusc.2004.06.082

    Article  CAS  ADS  Google Scholar 

  21. Zotov, A.V., Lifshits, V.G., Ditina, Z.Z., and Kalinin, P.A., Surf. Sci., 1992, vol. 273, p. L453. https://doi.org/10.1016/0039-6028(92)90269-c

    Article  CAS  ADS  Google Scholar 

  22. Kiefer, W., Richter, W., and Cardona, M., Phys. Rev. B, 1975, vol. 12, p. 2346. https://doi.org/10.1103/PhysRevB.12.2346

    Article  CAS  ADS  Google Scholar 

  23. Kreutz, E.W., Rickus, E., and Sotnik, N., Surf. Technol., 1980, vol. 11, p. 171. https://doi.org/10.1016/0376-4583(80)90044-8

    Article  CAS  Google Scholar 

  24. Liu, J. and Zhang, T., Appl. Surf. Sci., 1998, vol. 126, p. 231. https://doi.org/10.1016/S0169-4332(97)00695-8

    Article  CAS  ADS  Google Scholar 

  25. Siethoff, H., Phys. Lett. A, 1979, vol. 71, p. 265. https://doi.org/10.1016/0375-9601(79)90182-8

    Article  ADS  Google Scholar 

  26. Yang, W.S. and Zhao, R.G., Phys. Rev. Lett., 1986, vol. 56, p. 2877. https://doi.org/10.1103/PhysRevLett.56.2877

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Nakada, T. and Osaka, T., Phys. Rev. Lett., 1991, vol. 67, p. 2834. https://doi.org/10.1103/PhysRevLett.67.2834

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Aoki, K., Anastassakis, E., and Cardona, M., Phys. Rev. B, 1984, vol. 30, p. 681. https://doi.org/10.1103/PhysRevB.30.681

    Article  CAS  ADS  Google Scholar 

  29. Anastassakis, E., J. Raman Spectrosc., 1981, vol. 10, p. 64. https://doi.org/10.1002/jrs.1250100112

    Article  CAS  ADS  Google Scholar 

  30. Martin, R.M., Phys. Rev. B, 1970, vol. 1, p. 4005. https://doi.org/10.1103/PhysRevB.1.4005

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Far Eastern Center of Structural Studies for performing the XRD investigation.

Funding

This work was partially supported by the funding of the Ministry of Education and Science of the Russian Federation project no. 0202-2021-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Goroshko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goroshko, D.L., Chusovitina, S.V., Dotsenko, S.A. et al. Formation of Thin Films of InSb on Pristine and Modified Si(111) Using Solid Phase Epitaxy. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S29–S35 (2023). https://doi.org/10.1134/S1062873823704543

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704543

Keywords:

Navigation