Skip to main content
Log in

Scintillation Ceramic Nanoparticles Obtained by Solution Combustion Synthesis

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Yttrium oxide doped with cerium ions (Ce4+:Y2O3) is a promising material for ceramic scintillators, while the use of nanosized particles can reduce optical losses in the obtained ceramics during its sintering. The method of solution combustion synthesis for the synthesis of nanoparticles, has the following advantages: organic compounds are usually used as fuel, which are easily oxidized and introduce minimal pollution into the product, and gaseous products are released during the combustion, which makes it possible to obtain ceramic substances in a finely dispersed state. Experiments were carried out to obtain nanopowders of yttrium oxide doped with cerium ions by combustion in solutions using glycine/(glycine and citric acid) as a reducing agent/fuel. Yttrium nitrates were the initial components for the preparation of aqueous solutions. The characteristics of the synthesized particles of yttrium oxide doped with cerium ions are presented. X-ray phase analysis of the obtained materials after annealing at t = 600°C have shown that all samples are powders with a single-phase structure. In accordance with the data of scanning electron microscopy and particle size distribution of aggregates, the distribution peak of Ce4+:Y2O3 particle aggregates is at 10–12 nm. It has been shown that the method of combustion in solutions can be successfully used for the synthesis of metal oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Lu, J., Takaichi, K., Uematsu, T., Shirakawa, A., Musha, M., Ueda, K., Yagi, H., Yanagitani, T., and Kaminskii, A., Jpn. J. Appl. Phys., 2002, vol. 41, no. 12A, p. L1373. https://doi.org/10.1143/JJAP.41.L1373

    Article  CAS  ADS  Google Scholar 

  2. Solomonov, V.I., Osipov, V.V., Shitov, V.A., Luk’ya-shin, K.E., and Bubnova, A.S., Opt. Spectrosc., 2020, vol. 128, no. 1, p. 1. https://doi.org/10.1134/S0030400X20010221

    Article  CAS  ADS  Google Scholar 

  3. Osipov, V.V., Rasuleva, A.V., and Solomonov, V.I., Opt. Spectrosc., 2008, vol. 105, no. 4, p. 524. https://doi.org/10.1134/S0030400X08100068

    Article  CAS  ADS  Google Scholar 

  4. Dorenbos, P., Phys. Status Solidi A, 2005, vol. 202, no. 2, p. 195. https://doi.org/10.1002/pssa.200460106

    Article  CAS  ADS  Google Scholar 

  5. Mares, J.A., Nikl, M., Beitlerova, A., D’Ambrosio, C., de Notaristefani, F., Blazek, K., Maly, P., and Nejezchleb, K., Opt. Mater., 2003, vol. 24, nos. 1–2, p. 281. https://doi.org/10.1016/S0925-3467(03)00135-6

    Article  CAS  ADS  Google Scholar 

  6. Ikesue, A., Kinoshita, T., Kamata, K., and Yoshida K., J. Am. Ceram. Soc., 1995, vol. 78, no. 4, p. 1033. https://doi.org/10.1111/j.1151-2916.1995.tb08433.x

    Article  CAS  ADS  Google Scholar 

  7. Dujardin, C., Auffray, E., Bourret-Courchesne, E., Dorenbos, P., Lecoq, P., Nikl, M., Vasil’ev, A.N., Yoshikawa, A., and Zhu, R.Y., IEEE Trans. Nucl. Sci., 2018, vol. 65, no. 8, p. 1977. https://doi.org/10.1109/TNS.2018.2840160

    Article  CAS  ADS  Google Scholar 

  8. Bazhukova, I.N., Pustovarov, V.A., Myshkina, A.V., and Ulitko, M.V., Opt. Spectrosc., 2020, vol. 128, no. 12, p. 2050. https://doi.org/10.1134/S0030400X20120875

    Article  CAS  ADS  Google Scholar 

  9. Yanagida, T., Fujimoto, Y., Kamada, K., Totsuska, D., Yagi, H., Yanagitani, T., Futami, Y., and Yanagida, S., IEEE Trans.Nucl. Sci., 2012, vol. 59, no. 5, p. 2146. https://doi.org/10.1109/TNS.2012.2189583

    Article  CAS  ADS  Google Scholar 

  10. Dejonghe, L.C. and Rahaman, M.N., in Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, vol. 1: Materials Science, London: Academic, 2003, p. 187.

  11. Lu, J., Song, J., Prabhu, M., Xu, J., Ueda, K., Yagi, H., Yanagitani T., and Kudryashov, A., Jpn. J. Appl. Phys., 2000, vol. 39, no. 10B, p. L1048. https://doi.org/10.1143/JJAP.39.L1048

    Article  CAS  ADS  Google Scholar 

  12. Ikesue, A., and Aung, Y.L., J. Am. Ceram. Soc., 2006, vol. 89, no. 6, p. 1936. https://doi.org/10.1111/j.1551-2916.2006.01043.x

    Article  CAS  Google Scholar 

  13. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Chem. Rev., 2016, vol. 116, no. 23, p. 14493. https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  PubMed  Google Scholar 

  14. Vasei, V.H., Masoudpanah, S.M., Adeli M., and Aboutalebi, M.R., Adv. Powder Technol., 2019, vol. 30, no. 2, p. 284. https://doi.org/10.1016/j.apt.2018.11.004

    Article  CAS  Google Scholar 

  15. Khaliullin, Sh.M., Nefedova, K.V., and Zhuravlev, V.D., Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 1, p. 1. https://doi.org/10.3103/S1061386219010072

    Article  CAS  Google Scholar 

  16. Zhuravlev, V.D., Pachuev, A.V., Nefedova, K.V., and Ermakova, L.V., Int. J. Self-Propag. High-Temp. Synth., 2018, vol. 27, no. 3, p. 154. https://doi.org/10.3103/S1061386218030147

    Article  CAS  Google Scholar 

  17. Krutikova, I., Ivanov, M., Murzakaev, A., and Nefedova, K., Mater. Lett., 2020, vol. 265, p. 127435. https://doi.org/10.1016/j.matlet.2020.127435

    Article  CAS  Google Scholar 

  18. Ivanov, M.G., Krutikova, I.V., Kynast, U., Lezhnina, M., and Puzyrev, I.S., Opt. Mater., 2017, vol. 74, p. 67. https://doi.org/10.1016/j.optmat.2017.02.031

    Article  CAS  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study involved the equipment of the Collective Use Center at the Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences.

Funding

This investigation was fulfilled within State program of the Institute of Electrophysics of the Ural Branch of Russian Academy of Sciences (no. 122011200363-9) and State program of the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (no. 0320-2019-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Krutikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutikova, I.V., Nefedova, K.V. Scintillation Ceramic Nanoparticles Obtained by Solution Combustion Synthesis. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S82–S86 (2023). https://doi.org/10.1134/S1062873823704440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704440

Keywords:

Navigation