Skip to main content
Log in

Effect of Strain on the Fine Structure of Exciton States in Atomically Thin Transition Metal Dichalcogenides

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

In two-dimensional (2D) transition metal dichalcogenides, the sequence and splitting energy between spin-allowed (bright) and spin-forbidden (dark) excitons controls the optical and transport properties. In this paper, we discuss the effect of strain at both compression and tension on the band structure and fine spectrum of exciton states in MoS2 nanostructures. Using a combination of micro-Raman and time-resolved micro-photoluminescence, we found that the exciton spectrum in unstrained layers in complete agreement with the theoretical predictions. In the A-exciton series, the bright state is the lowest in the monolayer, while in the bilayer the exciton states are spin-degenerate due to the even number of layers. However, strain can lift the degeneracy and increase the splitting value in the monolayer by several times. On folds subjected to local tension, the splitting decreases down to the reversed sequence of dark and bright excitons. With both types of strain, the band structure tends to transform towards the indirect type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Wang, G., Chernikov, A., Glazov, M.M., Heinz, T.F., Marie, X., Amand, T., and Urbaszek, B., Rev. Mod. Phys., 2018, vol. 90, p. 021001. https://doi.org/10.1103/RevModPhys.90.021001

    Article  CAS  ADS  Google Scholar 

  2. Slobodeniuk, A.O., Bala, Ł., Koperski, M., Molas, M.R., Kossacki, P., Nogajewski, K., Bartos, M., Watanabe, K., Taniguchi, T., Faugeras, C., and Potemski, M., 2D Mater., 2019, vol. 6, p. 0250262019. https://doi.org/10.1088/2053-1583/ab0776

  3. Yuan, L., Wang, T., Zhu, T., Zhou, M., and Huang, L., J. Phys. Chem. Lett., 2017, vol. 8, p. 3371. https://doi.org/10.1021/acs.jpclett.7b00885

    Article  CAS  PubMed  Google Scholar 

  4. Mueller, T. and Malic, E., npj 2D Mater., 2018, vol. 2, p. 29. https://doi.org/10.1038/s41699-018-0074-2

  5. Glazov, M.M., Ivchenko, E.L., Wang, G., Amand, T., Marie, X., Urbaszek, B., and Liu, B.L., Phys. Status Solidi B, 2015, vol. 252, no. 11, p. 2349. https://doi.org/10.1002/pssb.201552211

    Article  CAS  ADS  Google Scholar 

  6. Wang, G., Robert, C., Glazov, M.M., Cadiz, F., Courtade, E., Amand, T., Lagarde, D., Taniguchi, T., Watanabe, K., Urbaszek, B., and Marie, X., Phys. Rev. Lett., 2017, vol. 119, p. 047401. https://doi.org/10.1103/PhysRevLett.119.047401

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Durnev, M.V. and Glazov, M.M., Phys.—Usp., 2018, vol. 61, p. 825. https://doi.org/10.3367/UFNe.2017.07.038172

    Article  CAS  ADS  Google Scholar 

  8. Robert, C., Amand, T., Cadiz, F., Lagarde, D., Courtade, E., Manca, M., Taniguchi, T., Watanabe, K., Urbaszek, B., and Marie, X., Phys. Rev. B, 2017, vol. 96, p. 155423. https://doi.org/10.1103/PhysRevB.96.155423

    Article  ADS  Google Scholar 

  9. Echeverry, J.P., Urbaszek, B., Amand, T., Marie, X., and Gerber, I.C., Phys. Rev. B, 2016, vol. 93, p. 121107(R). https://doi.org/10.1103/PhysRevB.93.121107

  10. Zhang, X.X., You, Y., Zhao, S.Y.F., and Heinz, T.F., Phys. Rev. Lett., 2015, vol. 115, p. 257403. https://doi.org/10.1103/PhysRevLett.115.257403

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Robert, C., Han, B., Kapuscinski, P., Delhomme, A., Faugeras, C., Amand, T., Molas, M.R., Bartos, M., Watanabe, K., Taniguchi, T., Urbaszek, B., Potemski, M., and Marie, X., Nat. Commun., 2020, vol. 11, p. 4037. https://doi.org/10.1038/s41467-020-17608-4

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Jr., Pantelides, S.T., and Bolotin, K.I., Nano Lett., 2013, vol. 13, p. 3626. https://doi.org/10.1021/nl4014748

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Peelaers, H. and van de Walle, C.G., Phys. Rev. B, 2012, vol. 86, p. 241401(R). https://doi.org/10.1103/PhysRevB.86.241401

  14. Yun, W.S., Han, S.W., Hong, S.C., Kim, I.G., and Lee, J.D., Phys. Rev. B, 2012, vol. 85, p. 033305. https://doi.org/10.1103/PhysRevB.85.033305

    Article  CAS  ADS  Google Scholar 

  15. Chang, C.H., Fan, X., Lin, S.H., and Kuo, J.L., Phys. Rev. B, 2013, vol. 88, p. 195420. https://doi.org/10.1103/PhysRevB.88.195420

    Article  CAS  ADS  Google Scholar 

  16. Roldán, R., Castellanos-Gomez, A., Cappelluti, E., and Guinea, F., J. Phys.: Condens. Matter, 2015, vol. 27, p. 313201. https://doi.org/10.1088/0953-8984/27/31/313201

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Zhao, J., Deng, Q., Ly, T.H., Han, G.H., Sandeep, G., and Rümmeli, M.H., Nat. Commun., 2015, vol. 6, p. 8935. https://doi.org/10.1038/ncomms9935

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Gelly, R.J., Renaud, D., Liao, X., Pingault, B., Bogdanovic, S., Scuri, G., Watanabe, K., Taniguchi, T., Urbaszek, B., Park, H., and Lončar, M., Nat. Commun., 2022, vol. 13, p. 232. https://doi.org/10.1038/s41467-021-27877-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Han, X., Lin, J., Liu, J., Wang, N., and Pan, D., J. Phys. Chem. C, 2019, vol. 123, p. 14797. https://doi.org/10.1021/acs.jpcc.9b02549

    Article  CAS  Google Scholar 

  20. Uchiyama, Y., Watanabe, K., Taniguchi, T., Kojima, K., Endo, T., and Miyata, Y., npj 2D Mater. Appl., 2019, vol. 3, p. 26. https://doi.org/10.1038/s41699-019-0108-4

    Article  CAS  Google Scholar 

  21. Cheiwchanchamnangij, T., Lambrecht, W., R.L., Song, Y., and Dery, H., Phys. Rev. B, 2013, vol. 88, p. 155404. https://doi.org/10.1103/PhysRevB.88.155404

    Article  CAS  ADS  Google Scholar 

  22. Zollner, K., Faria, P.E., Jr., and Fabian, J., Phys. Rev. B, 2019, vol. 100, p. 195126. https://doi.org/10.1103/PhysRevB.100.195126

    Article  CAS  ADS  Google Scholar 

  23. Song, Y. and Dery, H., Phys. Rev. Lett., 2013, vol. 11, p. 026601. https://doi.org/10.1103/PhysRevLett.111.026601

    Article  CAS  ADS  Google Scholar 

  24. Dery, H. and Song, Y., Phys. Rev. B, 2015, vol. 92, p. 125431. https://doi.org/10.1103/PhysRevB.92.125431

    Article  CAS  ADS  Google Scholar 

  25. Eliseyev, I.A., Galimov, A.I., Rakhlin, M.V., Evropeitsev, E.A., Toropov, A.A., Davydov, V.Yu., Thiele, S., Pezoldt, J., and Shubina, T.V., Phys. Status Solidi RRL, 2021, vol. 15, p. 2100263. https://doi.org/10.1002/pssr.202100263

    Article  CAS  Google Scholar 

  26. Glazov, M.M., Dirnberger, F., Menon, V.M., Taniguchi, T., Watanabe, K., Bougeard, D., Ziegler, J.D., and Chernikov, A., Phys. Rev. B, 2022, vol. 106, p. 125303. https://doi.org/10.1103/PhysRevB.106.125303

    Article  CAS  ADS  Google Scholar 

  27. Glazov, M.M., Phys. Rev. B, 2022, vol. 106, p. 235313. https://doi.org/10.1103/PhysRevB.106.235313

    Article  MathSciNet  CAS  ADS  Google Scholar 

  28. Faria, P.E., Jr., Zollner, K., T.Wὁzniak, Kurpas, M., Gmitra, M., and Fabian, J., New J. Phys., 2022, vol. 24, p. 083004. https://doi.org/10.1088/1367-2630/ac7e21

    Article  ADS  Google Scholar 

  29. S. Michaelis de Vasconcellos, Wigger, D., Wurstbauer, U., Holleitner, A.W., Bratschitsch, R., and Kuhn, T., Phys. Status Solidi B, 2022, vol. 259, p. 2100566. https://doi.org/10.1002/pssb.202100566

    Article  CAS  ADS  Google Scholar 

  30. Li, Y., Kuang, G., Jiao, Z., Yao, L., and Duan, R., Mater. Express, Res., 2022, vol. 9, p. 122001. https://doi.org/10.1088/2053-1591/aca6c6

    Article  Google Scholar 

  31. Zhu, C.R., Wang, G., Liu, B.L., Marie, X., Qiao, X.F., Zhang, X., Wu, X.X., Fan, H., Tan, P.H., Amand, T., and Urbaszek, B., Phys. Rev. B, 2013, vol. 88, p. 121301. https://doi.org/10.1103/PhysRevB.88.121301

    Article  CAS  ADS  Google Scholar 

  32. Hui, Y.Y., Liu, X., Jie, W., Chan, N.Y., Hao, J., Hsu, Y.-T., Li, L.-J., Guo, W., and Lau, S.P., ACS Nano, 2013, vol. 7, p. 7126. https://doi.org/10.1021/nn4024834

    Article  CAS  PubMed  Google Scholar 

  33. Bandaru, N., Kumar, R.S., Sneed, D., Tschauner, O., Baker, J., Antonio, D., Luo, S.N., Hartmann, T., Zhao, Y., and Venkat, R., J. Phys. Chem. C, 2014, vol. 118, p. 3230. https://doi.org/10.1021/jp410167k

    Article  CAS  Google Scholar 

  34. Lloyd, D., Liu, X., Christopher, J.W., Cantley, L., Wadehra, A., Kim, B.L., Goldberg, B.B., Swan, A.K., and Bunch, J.S., Nano Lett., 2016, vol. 16, p. 5836. https://doi.org/10.1021/acs.nanolett.6b02615

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Shubina, T.V., Remškar, M., Davydov, V.Y., Belyaev, K.G., Toropov, A.A., and Gil, B., Ann. Phys., 2019, vol. 531, p. 1800415. https://doi.org/10.1002/andp.201800415

    Article  CAS  Google Scholar 

  36. Zhang, X.-X., Cao, T., Lu, Z., Lin, Y.-C., Zhang, F., Wang, Y., Li, Z., Hone, J.C., Robinson, J.A., Smirnov, D., Louie, S.G., and Heinz, T.F., Nat. Nanotechnol., 2017, vol. 12, p. 883. https://doi.org/10.1038/nnano.2017.105

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Molas, M.R., Faugeras, C., Slobodeniuk, A.O., Nogajewski, K., Bartos, M., Basko, D.M., and Potemski, M., 2D Mater., 2017, vol. 4, p. 021003. https://doi.org/10.1088/2053-1583/aa5521

  38. Lagarde, D., Bouet, L., Marie, X., Zhu, C.R., Liu, B.L., Amand, T., Tan, P.H., and Urbaszek, B., Phys. Rev. Lett., 2014, vol. 112, p. 047401. https://doi.org/10.1103/PhysRevLett.112.047401

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Labeau, O., Tamarat, P., and Lounis, B., Phys. Rev. Lett., 2003, vol. 90, p. 257404. https://doi.org/10.1103/PhysRevLett.90.257404

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Smirnova, O.O., Eliseyev, I.A., Rodina, A.V., and Shubina, T.V., J. Phys.: Conf. Ser., 2020, vol. 1482, p. 012038. https://doi.org/10.1088/1742-6596/1482/1/012038

    Article  CAS  Google Scholar 

  41. Parto, K., Azzam, S.I., Banerjee, K., and Moody, G., Nat. Commun., 2021, vol. 12, p. 3585. https://doi.org/10.1038/s41467-021-23709-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Ruiz-Tijerina, D.A., Danovich, M., Yelgel, C., Zólyomi, V., and Fal’ko, V.I., Phys. Rev. B, 2018, vol. 98, p. 035411. https://doi.org/10.1103/PhysRevB.98.035411

    Article  CAS  ADS  Google Scholar 

Download references

Funding

The presented study was supported in part by the Russian Science Foundation project no. 23-12-00300 (TRPL measurements and modelling by T.V.S. and A.I.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Shubina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shubina, T.V., Galimov, A.I., Eliseev, I.A. et al. Effect of Strain on the Fine Structure of Exciton States in Atomically Thin Transition Metal Dichalcogenides. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S52–S59 (2023). https://doi.org/10.1134/S1062873823704403

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704403

Keywords:

Navigation