Skip to main content
Log in

Raman Gas Sensor Based on Metal-Coated Capillary Cell

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We presented a method for enhancing the Raman signal of gases using a capillary cell made of simple rectangular mirrors. The application of such a capillary with an internal size of 100 × 0.8 × 0.8 mm improved the signal-to-noise ratio by ∼8 times. It is shown that the developed Raman gas sensor has a detection limit of atmospheric CO2 close to 60 ppm at atmospheric pressure with an accumulation time of 100 s. Ways to improve the sensitivity of such a gas sensor up to several ppm were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Petrov, D.V., Matrosov, I.I., Tanichev, A.S., Kostenko, M.A., and Zaripov, A.R., Atmos. Ocean. Opt., 2022, vol. 35, p. 450. https://doi.org/10.1134/S1024856022040157

    Article  Google Scholar 

  2. Petrov, D.V., Matrosov, I.I., and Tikhomirov, A.A., J. Appl. Spectrosc., 2015, vol. 82, p. 120. https://doi.org/10.1007/s10812-015-0073-4

    Article  CAS  ADS  Google Scholar 

  3. Petrov, D.V., and Matrosov, I.I., J. Raman Spectrosc., 2017, vol. 48, p. 474. https://doi.org/10.1002/jrs.5062

    Article  CAS  ADS  Google Scholar 

  4. Niklas, C., Wackerbarth, H., and Ctistis, G., Sensors, 2021, vol. 21, p. 1698. https://doi.org/10.3390/s21051698

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Wang, P., Chen, W., Wan, F., Wang, J., and Hu, J., Opt. Express, 2019, vol. 27, p. 33312. https://doi.org/10.1364/OE.27.033312

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Wang, P., Chen, W., Wan, F., Wang, J., and Hu, J., Appl. Spectrosc. Rev., 2019, vol. 55, p. 393. https://doi.org/10.1080/05704928.2019.1661850

    Article  CAS  ADS  Google Scholar 

  7. Wang, P., Chen, W., Wang, J., Tang, J., Shi, Y., and Wan, F., Anal. Chem., 2020, vol. 92, p. 5969. https://doi.org/10.1021/ACS.ANALCHEM.0C00179

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Q.Y., Tan, Y., Qu, Z.H., Sun, Y., Liu, A.W., and Hu, S.M., Anal. Chem., 2023, vol. 95, p. 5652. https://doi.org/10.1021/acs.analchem.2c05432

    Article  CAS  PubMed  Google Scholar 

  9. Petrov, D.V., Appl. Opt., 2016, vol. 55, p. 9521. https://doi.org/10.1364/AO.55.009521

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Petrov, D.V., Matrosov, I.I., and Kostenko, M.A., Opt. Laser Technol., 2022, vol. 152, p. 108155. https://doi.org/10.1016/J.OPTLASTEC.2022.108155

    Article  CAS  Google Scholar 

  11. Velez, J.S.G. and Muller, A., Opt. Lett., 2020, vol. 45, p. 133. https://doi.org/10.1364/OL.45.000133

    Article  CAS  ADS  Google Scholar 

  12. Velez, J.S.G. and Muller, A., Meas. Sci. Technol., 2021, vol. 32, p. 045501. https://doi.org/10.1088/1361-6501/abd11e

    Article  CAS  ADS  Google Scholar 

  13. Tuesta, A.D., Fisher, B.T., Skiba, A.W., Williams, L.T., and Osborn, M.F., Appl. Opt., 2021, vol. 60, p. 773. https://doi.org/10.1364/AO.412054

    Article  PubMed  ADS  Google Scholar 

  14. Knebl, A., Yan, D., Popp, J., and Frosch, T., TrAC, Trends Anal. Chem., 2018, vol. 103, p. 230. https://doi.org/10.1016/j.trac.2017.12.001

    Article  CAS  Google Scholar 

  15. Ding, H., Hu, D., J.J., Yu, X., Liu, X., Zhu, Y., and Wang, G., Photonics, 2022, vol. 9, p. 134. https://doi.org/10.3390/PHOTONICS9030134

    Article  CAS  Google Scholar 

  16. Hanf, S., Keiner, R., Yan, D., Popp, J., and Frosch, T., Anal. Chem., 2014, vol. 86, p. 5278. https://doi.org/10.1021/ac404162w

    Article  CAS  PubMed  Google Scholar 

  17. Khannanov, M.N., Van’kov, A.B., Novikov, A.A., Semenov, A.P., Gushchin, P.A., Gubarev, S.I., Kirpichev, V.E., Morozova, E.N., Kulik, L.V., and Kukushkin, I.V., Appl. Spectrosc., 2020, vol. 74, p. 1496. https://doi.org/10.1177/0003702820915535

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Brooks, W.S.M., Partridge, M., Davidson, I.A.K., Warren, C., Rushton, G., Large, J., Wharton, M., Storey, J., Wheeler, N.V., and Foster, M.J., J. Raman Spectrosc., 2021, vol. 52, p. 1772. https://doi.org/10.1002/jrs.6195

    Article  CAS  ADS  Google Scholar 

  19. Khannanov, M.N., and Kirpichev, V.E., Bull. Russ. Acad. Sci.: Phys., 2021, vol. 85, p. 169. https://doi.org/10.3103/S1062873821020131

    Article  CAS  Google Scholar 

  20. Poletti, F., Wheeler, N.V., Kelly, T.W., Davidson, I.A., Foster, M.J., Brooks, W.S.M., Warren, C., Richardson, D.J., and Horak, P., Opt. Express, 2022, vol. 30, p. 43317. https://doi.org/10.1364/OE.473887

    Article  PubMed  ADS  Google Scholar 

  21. Hanf, S., Bögözi, T., Keiner, R., Frosch, T., and Popp, J., Anal. Chem., 2015, vol. 87, p. 982. https://doi.org/10.1021/ac503450y

    Article  CAS  PubMed  Google Scholar 

  22. Sandfort, V., Trabold, B., Abdolvand, A., Bolwien, C., Russell, P., Wöllenstein, J., and Palzer, S., Sensors, 2017, vol. 17, p. 2714. https://doi.org/10.3390/s17122714

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  23. Qian, G., Wan, F., Zhou, F., Wang, J., Kong, W., and Chen, W., Front. Phys., 2022, vol. 10, p. 917688. https://doi.org/10.3389/FPHY.2022.917688/BIBTEX

    Article  Google Scholar 

  24. James, T.M., Rupp, S., and Telle, H.H., Anal. Methods, 2015, vol. 7, p. 2568. https://doi.org/10.1039/C4AY02597K

    Article  CAS  Google Scholar 

  25. Rupp, S., James, T.M., Telle, H.H., Schlösser, M., and Bornschein, B., Fusion Sci. Technol., 2015, vol. 67, p. 547. https://doi.org/10.13182/FST14-T76

    Article  ADS  Google Scholar 

  26. Pearman, W.F., Carter, J.C., Angel, S.M., and Chan, J.W.J., Appl. Opt., 2008, vol. 47, p. 4627. https://doi.org/10.1364/AO.47.004627

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Pearman, W.F., Carter, J.C., Angel, S.M., and Chan, J.W.J., Appl. Spectrosc., 2008, vol. 62, p. 285. https://doi.org/10.1366/000370208783759650

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Wang, J., Chen, W., Chen, W., Wang, P., Wang, P., Zhang, Z., Wan, F., Zhou, F., Song, R., Wang, Y., and Gao, S., Opt. Express, 2021, vol. 29, p. 32296. https://doi.org/10.1364/OE.437693

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Bai, Y., Xiong, D., Yao, Z., Wang, X., and Zuo, D., J. Raman Spectrosc., 2022, vol. 53, p. 1023. https://doi.org/10.1002/jrs.6320

    Article  CAS  ADS  Google Scholar 

  30. Weber, A., Raman Spectroscopy of Gases and Liquids, Berlin: Springer, 1979.

    Book  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kostenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostenko, M.A., Matrosov, I.I., Zaripov, A.R. et al. Raman Gas Sensor Based on Metal-Coated Capillary Cell. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S47–S51 (2023). https://doi.org/10.1134/S1062873823704397

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704397

Keywords:

Navigation