Skip to main content
Log in

Advanced Bacterial Detection with SERS-Active Gold- and Silver-Coated Porous Silicon Nanowires

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

—Rapid and accurate bacterial identification plays a crucial role across diverse sectors, offering valuable applications. While traditional culture and molecular techniques maintain a high standard, the contemporary demand for diagnostics centers on swiftly delivering dependable insights into bacterial infections, directly at the site, within a short timeframe. In this study, we present a novel approach utilizing surface-enhanced Raman scattering (SERS)-active nanostructured substrates in the form of gold- and silver-coated porous silicon nanowires (AuAg@pSiNWs) for rapid and highly sensitive bacterial detection. The porous silicon nanowires are fabricated using a straightforward method known as metal-assisted chemical etching. Subsequently, silver and gold decoration is achieved through chemical reduction of metal salts, imbuing the substrates with SERS-active properties. Scanning electron microscopy data reveals that upon incubation with AuAg@pSiNWs, bacteria are localized amidst clusters and on the surface of the nanowires, particularly in the vicinity of bimetallic gold and silver nanoparticles. Illustrated through the utilization of Listeria innocua bacteria as a model, the SERS efficacy of AuAg@pSiNWs is highlighted, enabling rapid label-free bacterial diagnosis with a limit of detection of 1.14 × 104 CFU/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Rentschler, S., Kaiser, L., and Deigner, H.P., Int. J. Mol. Sci., 2021, vol. 22, no. 1, p. 456. https://doi.org/10.3390/ijms22010456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lavrentev, F.V., Rumyantsev, I.S., Ivanov, A.S., Shilovskikh, V.V., Orlova, O.Y., Nikolaev, K.G., Andreeva, D.A., and Skorb, E.V., ACS Appl. Mater. Interfaces, 2022, vol. 14, no. 5, p. 7321. https://doi.org/10.1021/acsami.1c22470

    Article  CAS  PubMed  Google Scholar 

  3. Zakharzhevskii, M., Drozdov, A.S., Kolchanov, D.S., Shkodenko, L., and Vinogradov, V.V., Nanomaterials, 2020, vol. 10, no. 2, p. 313. https://doi.org/10.3390/nano10020313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jarvis, R.M. and Goodacre, R., Anal. Chem., 2004, vol. 76, no. 1, p. 40. https://doi.org/10.1021/ac034689c

    Article  CAS  PubMed  Google Scholar 

  5. Pahlow, S., Meisel, S., Cialla-May, D., Weber, K., Rösch, P., and Popp, J., Adv. Drug Delivery Rev., 2015, vol. 89, p. 105. https://doi.org/10.1016/j.addr.2015.04.006

    Article  CAS  Google Scholar 

  6. Fleischmann, M., Hendra, P.J., and McQuillan, A.J., Chem. Phys. Lett., 1974, vol. 26, no. 2, p. 163. https://doi.org/10.1016/0009-2614(74)85388-1

    Article  CAS  ADS  Google Scholar 

  7. Schuster, K.C., Reese, I., Urlaub, E., Grapes, R., Lendl, B., Anal. Chem., 2000, vol. 72, p. 5529. https://doi.org/10.1021/ac000718x

    Article  CAS  PubMed  Google Scholar 

  8. Vendamani, V.S., Rao, S.N., Pathak, A.P., and Soma, V.R., ACS Appl. Nano Mater., 2022, vol. 5, no. 4, p. 4550. https://doi.org/10.1021/acsanm.1c04569

    Article  CAS  Google Scholar 

  9. Gonchar, K.A., Zubairova, A.A., Schleusener, A., Osminkina, L.A., and Sivakov, V., Nanoscale Res. Lett., 2016, vol. 11, p. 357. https://doi.org/10.1186/s11671-016-1568-5

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. Huang, Z., Geyer, N., Werner, P., de Boor, J., and Gösele, U., Adv. Mater., 2011, vol. 23, p. 285. https://doi.org/10.1002/adma201001784

    Article  CAS  PubMed  Google Scholar 

  11. Gonchar, K.A., I. V. Bozh’ev, Shalygina, O.A., and Osminkina, L.A., JETP Lett., 2023, vol. 117, p. 111. https://doi.org/10.1134/S0021364022603098

    Article  CAS  ADS  Google Scholar 

  12. Gongalsky, M.B., Pervushin, N.V., Maksutova, D.E., Tsurikova, U.A., Putintsev, P.P., Gyuppenen, O.D., Evstratova, Y.V., Shalygina, O.A., Kopeina, G.S., Kudryavtsev, A.A., and Osminkina, L.A., Nanomaterials, 2021, vol. 11, p. 2167. https://doi.org/10.3390/nano11092167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonchar, K.A., Moiseev, D.V., Bozhev, I.V., and Osminkina, L.A., Mater. Sci. Semicond. Proc., 2021, vol. 125, p. 105644. https://doi.org/10.1016/j.mssp.2020.105644

    Article  CAS  Google Scholar 

  14. Žukovskaja, O., Agafilushkina, S., Sivakov, V., Weber, K., Cialla-May, D., Osminkina, L., and Popp, J., Talanta, 2019, vol. 202, p. 171. https://doi.org/10.1016/j.talanta.2019.04.047

    Article  CAS  PubMed  Google Scholar 

  15. Parker, J.H., Jr., Feldman, D.W., and Ashkin, M., Phys. Rev., 1967, vol. 155, no. 3, p. 712. https://doi.org/10.1103/PhysRev.155.712

    Article  CAS  ADS  Google Scholar 

  16. Kartashova, A.D., Gonchar, K.A., Chermoshentsev, D.A., Alekseeva, E.A., Gongalsky, M.B., Bozhev, I.V., Eliseev, A.A., Dyakov, S.A., Samsonova, J.V., and Osminkina, L.A., ACS Biomater. Sci. Eng., 2022, vol. 8, no. 10, p. 4175. https://doi.org/10.1021/acsbiomaterials.1c00728

    Article  CAS  PubMed  Google Scholar 

  17. Gonchar, K.A., Alekseeva, E.A., Gyuppenen, O.D., Bozhev, I.V., Kalinin, E.V., Ermolaeva, S.A., and Osminkina, L.A., Opt. Spectrosc., 2022, vol. 130, p. 521. https://doi.org/10.1134/S0030400X22110017

    Article  CAS  ADS  Google Scholar 

  18. Efrima, S. and Zeiri, L., J. Raman Spectrosc., 2009, vol. 40, no. 3, p. 277. https://doi.org/10.1002/jrs.2121

    Article  CAS  ADS  Google Scholar 

  19. Potara, M., Jakab, E., Damert, A., Popescu, O., Canpean, V., and Astilean, S., Nanotechnology, 2011, vol. 22, no. 13, p. 135101. https://doi.org/10.1088/0957-4484/22/13/135101

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Sundaram, J., Park, B., Kwon, Y., and Lawrence, K.C., Int. J. Food Microbiol., 2013, vol. 167, no. 1, p. 67. https://doi.org/10.1016/j.ijfoodmicro.2013.05.013

    Article  CAS  PubMed  Google Scholar 

  21. Uusitalo, S., Kögler, M., A.L. Välimaa, Popov, A., Ryabchikov, Y., Kontturi, V., Siitonen, S., Petäjä, J., Virtanen, T., Laitinen, R., and Kinnunen, M., RSC Adv., 2016, vol. 6, no. 67, p. 62981. https://doi.org/10.1039/C6RA08313G

    Article  CAS  ADS  Google Scholar 

  22. Busch, R.T., Karim, F., Sun, Y., Fry, H.C., Liu, Y., Zhao, C., and Vasquez, E.S., Front. Nanotechnol., 2021, vol. 3, p. 653744. https://doi.org/10.3389/fnano.2021.653744

    Article  Google Scholar 

  23. N. Massad-Ivanir, Shtenberg, G., Raz, N., Gazenbeek, C., Budding, D., Bos, M.P., and Segal, E., Sci. Rep., 2016, vol. 6, p. 1038. https://doi.org/10.1038/srep38099

    Article  CAS  Google Scholar 

  24. Chiappini, C., Liu, X., Fakhoury, J.R., and Ferrari, M., Adv. Funct. Mater., 2010, vol. 20, no. 14, p. 2231. https://doi.org/10.1002/adfm.201000360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Premasiri, W.R., Lee, J.C., A. Sauer-Budge, Théberge, R., Costello, C.E., and Ziegler, L.D., Anal. Bioanal. Chem., 2016, vol. 408, p. 4631. https://doi.org/10.1007/s00216-016-9540-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maquelin, K., L.-P. Choo-Smith, T. van Vreeswijk, Endtz, H.Ph., Smith, B., Bennett, R., Bruining, H.A., and G. J. Puppels, Anal. Chem., 2000, vol. 72, no. 1, p. 12. https://doi.org/10.1021/ac991011h

    Article  CAS  PubMed  Google Scholar 

  27. Thode, J., How to determine the LOD using the calibration curve? https://mpl.loesungsfabrik.de/en/english-blog/method-validation/calibration-line-procedure.

Download references

ACKNOWLEDGMENTS

The measurements were performed using SEM of the Training Methodical Center of Lithography and Microscopy, Moscow State University.

Funding

The study was supported by the Russian Science Foundation, grant no. 22-72-10062. https://rscf.ru/en/project/22-72-10062/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Osminkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarovskaia, D.A., Domnin, P.A., Gyuppenen, O.D. et al. Advanced Bacterial Detection with SERS-Active Gold- and Silver-Coated Porous Silicon Nanowires. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S41–S46 (2023). https://doi.org/10.1134/S1062873823704385

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704385

Keywords:

Navigation