Skip to main content
Log in

La0.5Sr0.5FeO3 – γ Ferrite Studied by Raman Spectroscopy

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Transformations of polycrystalline La0.5Sr0.5FeO3 – γ ferrites subjected to vacuum annealing in the temperature range of 400–650°C were studied by Raman spectroscopy at ambient conditions. It was shown that the homogeneity of the sample and its local ordering depended on the vacuum annealing temperature. An increase in the vacuum annealing temperature resulted in a gradual loss of oxygen and a transition of all iron ions to the oxidation state Fe3+. These ferrites demonstrated a shift of the whole Raman spectra (including two-magnon modes) to higher frequencies with increasing Sr content of 0 < x < 0.5. The possible reasons for the observed effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Shaula, A., Pivak, Y., Waerenborgh, J., Gaczynski, P., Yaremchenko, A., and Kharton, V., Solid State Ionics, 2006, vol. 177, p. 2923.

    Article  CAS  Google Scholar 

  2. Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., Leonidov, I.A., Kozhevnikov, V.L., and Poeppelmeier, K.R., J. Solid State Chem., 2003, vol. 172, p. 219.

    Article  CAS  ADS  Google Scholar 

  3. Shin, Y., Doh, K.-Y., Kim, S.H., Lee, J.H., Bae, H., Song, S.-J., and Lee, D., J. Mater. Chem. A, 2020, vol. 8, p. 4784.

    Article  CAS  Google Scholar 

  4. Wei, Z.-X., Xu, Y.-Q., Liu, H.-Y., and Hu, C.-W., J. Hazard. Mater., 2009, vol. 165, p. 1056.

    Article  CAS  PubMed  Google Scholar 

  5. Tijare, S.N., Joshi, M.V., Padole, P.S., Mangrulkar, P.A., Rayalu, S.S., and Labhsetwar, N.K., Int. J. Hydrogen Energy, 2012, vol. 37, p. 10451.

    Article  CAS  Google Scholar 

  6. Goodenough, J.B., Magnetism and the Chemical Bond, New York: Wiley, 1963, vol. 1.

    Google Scholar 

  7. Boekema, C., Jonker, P.C., Filoti, G., van der Woude, F., and Sawatzky, G.A., Hyperfine Interact., 1979, vol. 7, p. 45.

    Article  CAS  ADS  Google Scholar 

  8. Schmidt, M. and Campbell, S.J., J. Solid State Chem., 2001, vol. 156, p. 292.

    Article  CAS  ADS  Google Scholar 

  9. Sedykh, V.D., Rybchenko, O.G., Nekrasov, A.N., Koneva, I.E., and Kulakov, V.I., Phys. Solid State, 2019, vol. 61, p. 1099.

    Article  CAS  ADS  Google Scholar 

  10. Sedykh, V., Rybchenko, O., Rusakov, V., Zaitsev, S., Barkalov, O., Postnova, E., Gubaidulina, T., Pchelina, D., and Kulakov, V., J. Phys. Chem. Solids, 2022, vol. 171, p. 111001.

    Article  CAS  Google Scholar 

  11. Sedykh, V., Rusakov, V., Rybchenko, O., Gapochka, A., Gavrilicheva, K., Barkalov, O., Zaitsev, S., and Kulakov, V., Ceram. Int., 2023, vol. 49, p. 25640.

    Article  CAS  Google Scholar 

  12. Barkalov, O.I., Zaitsev, S.V., and Sedykh, V.D., Solid State Commun., 2022, vol. 354, p. 114912.

    Article  CAS  Google Scholar 

  13. Weber, M.C., Guennou, M., Zhao, H.J., Íñiguez, J., Vilarinho, R., Almeida, A., Moreira, J.A., and Kreisel, J., Phys. Rev. B, 2016, vol. 94, p. 214103.

    Article  ADS  Google Scholar 

  14. Anokhin, A.S., Razumnaya, A.G., Torgashev, V.I., Trotsenko, V.G., Yuzyuk, Yu.I., Bush, A.A., Shkuratov, V.Ya., Gorshunov, B.P., Zhukova, E.S., Kadyrov, L.S., and Komandin, G.A., Phys. Solid State, 2013, vol. 55, p. 1417.

    Article  CAS  ADS  Google Scholar 

  15. Andreasson, J., Holmlund, J., Knee, C.S., Käll, M., Börjesson, L., Naler, S., Bäckström, J., Rübhausen, M., Azad, A.K., and Eriksson, S.-G., Phys. Rev. B, 2007, vol. 75, p. 104302.

    Article  ADS  Google Scholar 

  16. Manzoor, S., Husain, S., and V. Raghavendra Reddy, Appl. Phys. Lett., 2018, vol. 113, p. 072901.

    Article  ADS  Google Scholar 

  17. Dann, S.E., Currie, D.B., Weller, M.T., Thomas, M.F., and Al-Rawwas, A.D., J. Solid State Chem., 1994, vol. 109, p. 134.

    Article  CAS  ADS  Google Scholar 

  18. Yang, J.B., Yelon, W.B., James, W.J., Chu, Z., Kornecki, M., Xie, Y.X., Zhou, X.D., Anderson, H.U., Joshi, A.G., and Malik, S.K., Phys. Rev. B, 2002, vol. 66, p. 184415.

    Article  ADS  Google Scholar 

  19. Selbach, S.M., Tolchard, J.R., Fossdal, A., and Grande, T., J. Solid State Chem., 2012, vol. 196, p. 249.

    Article  CAS  ADS  Google Scholar 

  20. Sedykh, V.D., Rybchenko, O.G., Barkovsky, N.V., Ivanov, A.I., and Kulakov, V., Fiz. Tverd. Tela, 2021, vol. 63, p. 1648.

    Google Scholar 

  21. Auckett, J.E., Studer, A.J., Sharma, N., and Ling, C.D., Solid State Ionics, 2012, vol. 225, p. 432.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to acknowledge using the micro-Raman optical system of the Research Facility Center in the Osipyan Institute of Solid State Physics, Russian Academy of Sciences, for the data acquisition.

Funding

This work was carried out within the framework of the state task of the Osipyan Institute of Solid State Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Gavrilicheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilicheva, K.A., Barkalov, O.I. & Sedykh, V.D. La0.5Sr0.5FeO3 – γ Ferrite Studied by Raman Spectroscopy. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S36–S40 (2023). https://doi.org/10.1134/S1062873823704373

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704373

Keywords:

Navigation