Skip to main content
Log in

Effect of Nanosized Oxides on Structural and Dynamic Properties of Composites Based on LiClO4

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

Structural and dynamic properties of the composites based on lithium perchlorate LiClO4 at various temperatures, phase states, and concentrations of the inert fillers SiO2 and Al2O3 were studied by Raman scattering (RS) and differential thermal analysis (DTA). It was shown that an amorphous phase formed in the (1 – х)LiClO4 + xSiO2 and (1 – х)LiClO4 + xAl2O3 composites (for x ≥ 0.4), its thermal effect was recorded at 200°С. In the Raman spectrum of the heterogeneous system, in the frequency range corresponding to totally symmetric vibration of the perchlorate anion, an additional component with a Raman maximum at \(\nu _{1}^{{\text{c}}}\) ∼ 954 cm–1, which could be attributed to an amorphous phase, was also revealed. While the filler concentration increased, the values of enthalpies of phase transitions decreased monotonically, and at x = 0.8, both spectral and thermophysical manifestations of phase transitions completely disappeared. Doping of lithium perchlorate with silicon and aluminum oxides led to an increase in ionic conductivity. The maximum values of conductivity were observed for the 0.4LiClO4 + 0.6SiO2 and 0.5LiClO4 + 0.5Al2O3 composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Liang C.C., J. Electrochem. Soc., 1937, vol. 120, p. 1289.

    Article  Google Scholar 

  2. Ulihin, A.S., Uvarov, N.F., Mateyshina, Y.G., Brezhneva, L.I., and Matvienko, A.A., Solid State Ionics, 2006, vol. 177, p. 2787.

    Article  CAS  Google Scholar 

  3. Zhang, Z., Wang, X., Li, X., Zhao, J., Liu, G., Yu, W., Dong, X., and Wang, J., Mater. Today Sustainability, 2023, vol. 21, p.100316. https://doi.org/10.1016/j.mtsust.2023.100316

    Article  Google Scholar 

  4. Zou, Z., Li, Y., Lu, Z., Wang, D., Cui, Y., Guo, B., and Shi, S., Chem. Rev., 2020, vol. 120, no. 9, p. 4169. https://doi.org/10.1021/acs.chemrev.9b00760

    Article  CAS  PubMed  Google Scholar 

  5. Xu, Zh., Zheng, L., Chen, B., Zhang, T., Chang, X., Wei, Sh., and Dai, Z., Energy Storage Sci. Technol., 2021, vol. 10, no. 6, p. 2117.

    Google Scholar 

  6. Reddy, Y.G., Sekhar, M.Ch., Chary, A.S., and Reddy, S.N., IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 310, p. 012160. https://doi.org/10.1088/1757-899X/310/1/012160

    Article  Google Scholar 

  7. Uvarov, N.F., Ulihin, A.S., Slobodyuk, A.B., Kavun, V.Ya., and Kirik, S.D., ECS Trans., 2008, vol. 11, no. 31, p. 9.

    Article  CAS  ADS  Google Scholar 

  8. Ulihin, A., Ponomareva, V., Uvarov, N.F., Kovalenko, K., and Fedin, V.P., Ionics, 2020, vol. 26, no. 51, p. 6166. https://doi.org/10.1007/s11581-020-03772-6

    Article  CAS  Google Scholar 

  9. Hafizul Mat, Nor Sabirin Mohamed, and Ri Hanum Yahaya Subban, Adv. Mater. Res., 2012, vols. 415–417, p. 442.

    Google Scholar 

  10. Gafurov, M.M., Rabadanov, K.Sh., Ataev, M.B., Amirov, A.M., Kubataev, Z.Yu., and Kakagasanov, M.G., Solid State Physics, 2015, vol. 57, no. 10, p. 2011.

    Article  Google Scholar 

  11. Sulaiman, M., Rahman, A.A., and Mohamed, N.S., Arab. J. Chem., 2017. vol. 10, no. 8, p. 1147.

    Article  CAS  Google Scholar 

  12. Stogiannidis, G., Tsigoias, S., Mpourazanis, P., Boghosian, S., Kaziannis, S., and Kalampounias, A.G., Chem. Phys., 2019, vol. 522, p. 1. https://doi.org/10.1016/j.chemphys.2019.02.009

    Article  CAS  Google Scholar 

  13. Painter, P., Zhao, H., and Park, Y., Vib. Spectrosc., 2011, vol. 55, no. 2, p. 224. https://doi.org/10.1016/j.vibspec.2010.12.005

    Article  CAS  Google Scholar 

  14. Kalampounias, A.G., Kirillov, S.A., Steffen, W., and Yannopoulos, S.N., J. Mol. Struct., 2003, vols. 651–653, p. 475. https://doi.org/10.1016/S0022-2860(03)00128-5

    Article  CAS  ADS  Google Scholar 

  15. Gafurov, M.M., Rabadanov, K.S., Ataev, M.B., Amirov, A.M., Akhmedov, M.A., Shabanov, N.S., Kubataev, Z.Yu., and Rabadanova, D.I., Spectrochim. Acta, Part A, 2021, vol. 257, p. 119765.

    Article  CAS  Google Scholar 

  16. Amirov, A.M., Suleymanov, S.I., Gafurov, M.M., et al., J. Therm. Anal. Calorim., 2022, vol. 147, p. 9283. https://doi.org/10.1007/s10973-022-11256-0

    Article  CAS  Google Scholar 

  17. Gafurov, M.M., Rabadanov, K.Sh., Kubataev, Z.Yu., Ataev, M.B., Amirov, A.M., and Kakagasanov, M.G., Vestn. Dagestan. Gos. Univ., Ser. 1: Estestv. Nauki, 2019, vol. 34, no. 3.

  18. Ulihin, A.S. and Uvarov, N.F., Proc. 3rd Int. Forum on Strategic Technologies, Novosibirsk–Tomsk, 2008, p. 141. https://doi.org/10.1109/IFOST.2008.4602940

  19. Ulihin, A.S. and Uvarov, N.F., Russ. J. Electrochem., 2009, vol. 45, p. 707.

    Article  CAS  Google Scholar 

  20. Ulihin, A.S., Uvarov, N.F., Rabadanov, K.Sh., Gafurov, M.M., and Gerasimov, K.B., Solid State Ionics, 2022, vol. 378, p. 115889.

    Article  CAS  Google Scholar 

  21. Mateyshina, Y., Slobodyuk, A., Kavun, V., and Uvarov, N., Solid State Ionics, 2018, vol. 324, p. 196.

    Article  CAS  Google Scholar 

  22. Uvarov, N., Ulihin, A., Ponomareva, V., Kovalenko, K.A., and Fedin, V.P., Nanomaterials, 2022, vol. 12, no. 19, p. 3263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, X. and Kuroda, D.G., Chem. Commun., 2023, vol. 59, p. 1849. https://doi.org/10.1039/D2CC05645

    Article  CAS  Google Scholar 

  24. Abramczyk, H. and Paradowska-Moszkowska, K., Chem. Phys., 2001, vol. 265, no. 2, p. 177.

    Article  CAS  Google Scholar 

  25. Penna, T.C., Faria, L.F.O., and Ribeiro, M.C.C., J. Mol. Liq., 2015, vol. 209, p. 676.

    Article  CAS  Google Scholar 

  26. Gafurov, M.M. and Rabadanov, K.S., Appl. Spectrosc. Rev., 2022, vol. 58, p. 489. https://doi.org/10.1080/05704928.2022.2048305

    Article  CAS  ADS  Google Scholar 

  27. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, New York: Wiley, 1986.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Yu. Kubataev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubataev, Z.Y., Gafurov, M.M., Rabadanov, K.S. et al. Effect of Nanosized Oxides on Structural and Dynamic Properties of Composites Based on LiClO4. Bull. Russ. Acad. Sci. Phys. 87 (Suppl 1), S21–S28 (2023). https://doi.org/10.1134/S1062873823704361

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062873823704361

Keywords:

Navigation