Skip to main content
Log in

Application of Neural Networks in Rock Mass Stress Assessment by Photoelasticity

  • GEOINFORMATION SCIENCE
  • Published:
Journal of Mining Science Aims and scope

Abstract

The optical polarization method with ring-shaped photoelastic sensors, digital photography of isochromatic patterns and their clarification using neural networks is developed for the stress measurement in rock mass. The case-studies of the photoelasticity application in solving various problems of elasticity and rock pressure analysis are reviewed. As a result of a lab-scale experiment, a data set of 15000 isochromatic images is collected. The machine learning algorithm was a convolutional neural network, the Inception module. The authors recommend using downhole sensors for the continuous stress monitoring in underground mines and integrating the obtained data in a digital model with the help of IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

REFERENCES

  1. Zhang, Q.Y., Zhang, Y., Duan, K., Liu, C.C., Miao, Y.S., and Wu, D., Large-Scale Geo-Mechanical Model Tests for the Stability Assessment of Deep Underground Complex under Truetriaxial Stress, Tunnel. Underground Space Technol., 2019, vol. 83, pp. 577–591.

    Google Scholar 

  2. Holmøy, K.H. and Nilsen, B., Significance of Geological Parameters for Predicting Water Inflow in Hard Rock Tunnels, J. Rock. Mech. Rock. Eng., 2014, vol. 47, pp. 853–868.

    ADS  Google Scholar 

  3. Li, X., Gong, F., Tao, M., Dong, L., Du, K., Ma, C., Zhou, Z., and Yin, T., Failure Mechanism and Coupled Static-Dynamic Loading Theory in Deep Hard Rock Mining: A Review, J. Rock Mech. Geotech. Eng., 2017, vol. 9, pp. 767–782.

    Google Scholar 

  4. Liu, R., Liu, Y., Xin, D., Li, S., Zheng, Z., Ma, C., and Zhang, C., Prediction of Water Inflow in Subsea Tunnels under Blasting Vibration, Water (Switzerland), 2018, vol. 10, no. 10. — 1336.

    Google Scholar 

  5. Dammyra, O., Nilsena, B., and Golleggerb, J., Feasibility of Tunnel Boring through Weakness Zones in Deep Norwegian Subsea Tunnels, Tunnel. Underground Space Technol., 2017, vol. 69, pp. 133–146.

    Google Scholar 

  6. Biryuchev, I.V., Makarov, A.B., and Usov, A.A., Geomechanical Model of a Mine. Part I. Creation, Gornyi Zhurnal, 2020, no. 1, pp. 42–48.

  7. Konurin, A.I., Neverov, S.A., Neverov, A.A., and Shchukin, S.A., The Problem of Numerical Modeling of Stress-Strain State and Stability of a Fractured Rock Mass, Fund. Prikl. Vopr. Gorn. Nauk, 2019, vol. 6, no. 2, pp. 144–150.

    Google Scholar 

  8. Neverov, S.A., Types of Orebodies on the Basis of the Occurrence Depth and Stress State. Part I: Modern Concept of the Stress State versus Depth, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 249–259.

    Google Scholar 

  9. Leont’ev, A.V., Rubtsova, E.V., Lekontsev, Yu.M., and Kachal’sky, V.G., Measuring-Computing Complex "Gidrorazryv", Journal of Mining Science, 2010, vol. 46, no. 1, pp. 89–94.

    Google Scholar 

  10. Leont’ev, A.V., Makarov, A.B., and Tarasov, A.Yu., In Situ Stress State Assessment in the Nurkazgan Mine, Journal of Mining Science, 2013, vol. 49, no. 4, pp. 550–556.

    Google Scholar 

  11. Kurlenya, M.V., Baryshnikov, V.D., Baryshnikov, D.V., Gakhova, L.N., Kachal’sky, V.G., and Khmelinin, A.P., Development and Improvement of Borehole Methods for Estimating and Monitoring Stress-Strain Behavior of Engineering Facilities in Mines, Journal of Mining Science, 2019, vol. 55, no. 4, pp. 682–694.

    Google Scholar 

  12. Golovin, S.A. and Gusev, K.V., Criterion for the Qualitative Difference between Industry 3.0 and Industry 4.0, Standarty i Kachestvo, 2022, no. 4, pp. 96–100.

  13. Zhang, X., Nguyen, H., Bui, X.N., Le, H.A., Nguyen-Thoi, T., Moayedi, H., and Mahesh, V., Evaluating and Predicting the Stability of Roadways in Tunnelling and Underground Space Using Artificial Neural Network-Based Particle Swarm Optimization, Tunnel. Underground Space Technol., 2020, vol. 103. 103517.

    Google Scholar 

  14. Pu, Y., Apel, D., Liu, W., and Mitri, H., Machine Learning Methods for Rockburst Prediction-State-of-the-Art Review, Int. J. Min. Sci. Technol., 2019, vol. 29, pp. 565–570.

    Google Scholar 

  15. Duan, Y., Shen, Y., Canbulat, I., and Si, G., Classification of Clustered Microseismic Events in a Coal Mine Using Machine Learning, J. Rock Mech. Geotech. Eng., 2021, vol. 13, pp. 1256–1273.

    Google Scholar 

  16. Jinqiang, W., Basnet, P., and Mahtab, S., Review of Machine Learning and Deep Learning Application in Mine Microseismic Event Classification, Min. Miner. Deposits, 2021, vol. 15, pp. 19–26.

    Google Scholar 

  17. Bhatawdekar, R., Nguyen, H., Rostami, J., Bui, X., Jahed Armaghani, D., Ragam, P., and Mohamad, E., Prediction of Flyrock Distance Induced by mine Blasting Using a Novel Harris Hawks Optimization-Based Multi-Layer Perceptron Neural Network, J. Rock Mech. Geotech. Eng., 2021, vol. 13, pp. 1413–1427.

    Google Scholar 

  18. Isleyen, E., Duzgun, S., and Carter, R., Interpretable Deep Learning for Roof Fall Hazard Detection in Underground Mines, J. Rock Mech. Geotech. Eng., 2021, vol. 13, pp. 1246–1255.

    Google Scholar 

  19. Kulakov, G.I. and Schastlivtsev, E.L., Skvazhinnye kol’tsevye fotouprugie datchiki (Downhole Ring-Shaped Photoelastic Sensors), Kemerovo: IUiU SO RAN, 2007.

    Google Scholar 

  20. Khaimova-Malkova, R.I., Metodika issledovaniya napryazhenii polyarizatsionno-opticheskim metodom (Procedure for Studying Stresses Using Optical Polarization), Moscow: Nauka, 1970.

    Google Scholar 

  21. Filatov, N.A., Belyakov, V.D., and Ievlev, G.A., Fotouprugost’ v gornoi geomekhanike (Photoelasticity in Rock Geomechanics), Moscow: Nedra, 1975.

    Google Scholar 

  22. Trumbachev, V.F. and Slavin, O.K., Metodika modelirovaniya massiva gornykh porod metodami fotomekhaniki. Ch. I–II. (Procedure for Modeling Rock Mass by Photomechanical Methods. Parts I–II), Moscow: IGD im. Skochinskogo, 1975.

    Google Scholar 

  23. Ju, Y., Ren, Z., Mao, L., and Chiang, F.P., Quantitative Visualization of the Continuous Whole-Field Stress Evolution in Complex Pore Structures Using Photoelastic Testing and 3D Printing Methods, Optics Express, 2018, vol. 26, no. 5, pp. 6182–6201.

    ADS  CAS  PubMed  Google Scholar 

  24. Guo, J., Zhu, B., Liu, X., Luo, J., and Li, Z., Study on the Geo-Stress Loading and Excavation Unloading Devices of the Large-Scale Photoelastic Model Test for Deep-Buried Tunnels, Hindawi, Shock and Vibration, 2021. 1939505.

  25. Adelfar, M., Tavangar, R., Horandghadim, N., and Khalil-Allafi, J., Evaluating Superelastic and Shape Memory Effects Using the Photostress Technique, Materials Today Communications, 2020, vol. 23. 101156.

    Google Scholar 

  26. Asai, K., Yoshida, S., Yamada, A., Matsuoka, J., Errapart, A., and Kurkjian, C.R., Micro-Photoelastic Evaluation of Indentation-Induced Stress in Glass, Materials Transactions, 2019, vol. 60, no. 8, pp. 1423–1427.

    CAS  Google Scholar 

  27. Ju, Y., Ren, Z., Mao, L., and Chiang, F.P. Quantitative visualization of the continuous whole-field stress evolution in complex pore structures using photoelastic testing and 3D printing methods, Optics Express, 2018, Vol. 26, No. 5. pp. 6182–6201.

  28. Wang, Y., Zheng, G., and Wang, X., Development and Application of a Goafsafety Monitoring System Using Multi-Sensor Information Fusion, Tunnel. Underground Space Technol., 2019, vol. 94. 103112.

    Google Scholar 

  29. Konurin, A., Neverov, S., Neverov, A., Orlov, D., Zharov, I., and Konurina, M., Application of Artificial Neural Networks for Stress State Analysis Based on the Photoelastic Method, Geohazard Mechanics, 2023, vol. 1, no. 2, pp. 128–139.

    Google Scholar 

  30. Nesterenko, G.T., Tverdovsky, R.K., and Artemov, R.P., Improvement of Unloading Method for Stress Determination in Hard Fractured Rocks, Trudy VNIMI, 1966, no. 62, pp. 169–182.

  31. Famin, L.B., Installation for Experimental Determination of Changes—Stress State of a Coal Seam in Bottomhole Area, Tekhnologiya i ekonomika ugledobychi, 1960, no. 4, pp. 70–73.

  32. Hiramatsu, Y., Measurement of Variation in Stress with a Photoelastic Stressmeter, Kyoto, 1964.

  33. Barron, K., Class Insert Stressmeters, Trans. Am. Inst. Min. Metall. Eng., 1965, vol. 235, pp. 287–299.

    Google Scholar 

  34. Hawkes, I. and Fellers, G.E., Theory of the Determination of Greatest Principal Stress in a Biaxial Stress Field Using Photoelastic Hollow Cylinder Inclusions, Int. J. Rock Mech. Min. Sci., 1969, vol. 6, pp. 143–158.

    Google Scholar 

  35. Shrepp, B.V., Boyarkin, V.I., and Svechnikov, V.F., Izuchenie napryazhennogo massiva s ispol’zovaniem fotouprugikh tenzometrov i opticheskikh datchikov. Izmerenie napryazhenii v massive gornykh porod (Study of a Stressed Rock Mass Using Photoelastic Strain Gauges and Optical Sensors. Stress Measurement in a Rock Mass), Novosibirsk: IGD SO AN SSSR, 1972.

    Google Scholar 

  36. Gritsko, G.I., Senuk, D.P., and Kulakov, G.I., Measuring Stresses in a Hereditary-Elastic Medium by Means of Photoelastic Sensors, Journal of Mining Science, 1970, vol. 6, no. 3, pp. 330–332.

    Google Scholar 

  37. Kulakov, G.I., Use of Photoelastic Indicators in the Complete Relief Method, Journal of Mining Science, 1980, vol. 16, no. 5, pp. 484–488.

    Google Scholar 

  38. Kurlenya, M.V., Guzhova, S.V., and Kulakov, G.I., Zhestkie datchiki napryazhenii dlya geomekhanicheskikh izmerenii (Rigid Stress Gauges for Geomechanical Measurements), Novosibirsk: Nauka, 1990.

    Google Scholar 

  39. Guzhova, S.V., Development of Methods for Measuring Total Stresses in Rock Masses and in Tubing Supports Using Photoelastic Sensors, Cand. Tech. Sci. Thesis, Novosibirsk, 2003.

  40. Galushkin, A.I., Neironnye seti: osnovy teorii (Neural Networks: Basic Theory), Moscow: RiS, 2014.

    Google Scholar 

  41. Wu, H., Global Stability Analysis of a General Class of Discontinuous Neural Networks with Linear Growth Activation Functions, Information Sciences, 2009, vol. 179, no. 19, pp. 3432–3441.

    MathSciNet  Google Scholar 

  42. Kashirina, I.L. and Demchenko, M.V., Study and Comparative Analysis of Optimization Methods Used in Neural Networks Learning, Vestn. VGU. Seriya: Sistemnyi analiz i informatsionnye tekhnologii, 2018, no. 4, pp. 123–132.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Neverov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 6, pp. 176-189. https://doi.org/10.15372/FTPRPI20230617.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neverov, S.A., Neverov, A.A., Konurin, A.I. et al. Application of Neural Networks in Rock Mass Stress Assessment by Photoelasticity. J Min Sci 59, 1045–1057 (2023). https://doi.org/10.1134/S1062739123060170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123060170

Keywords

Navigation