Skip to main content
Log in

Stimulation of Flotation Selectivity Using Physisorption Mechanism of Collectors

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The main mechanisms of flotation activation by ions of metals are discussed and critically analyzed. It is shown that ions of metals can be both activators and depressants of flotation. Based on the mechanism of physisorption, it is revealed when metals act as activators and depressants. A method is proposed to stimulate selectivity of extraction of a target mineral in case of undesirable activation of flotation of associate components. The studies can be useful in selection of metal–activator, ratio of concentrations of activator and collector and pH of flotation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. Nagaraj, D.R. and Farinato, R.S., Evolution of Flotation Chemistry and Chemicals: A Century of Innovations and the Lingering Challenges, Min. Eng., 2016.

    Google Scholar 

  2. Babel, B. and Rudolph, M., Investigating Reagent-Mineral Interactions by Colloidal Probe Atomic Force Microscopy, Int. Miner. Proc. Congress, Moscow, 2018, pp. 1384–1391.

  3. Li, H., Liu, M., and Liu, Q., The Effect of Non-Polar Oil on Fine Hematite Flocculation and Flotation Using Sodium Oleate or Hydroxamic Acids as a Collector, Min. Eng., 2018, vol. 219, pp. 105–115.

    Google Scholar 

  4. Fuerstenau, M.C., Martin, C.C., and Bhappu, R.B., The Role of Hydrolysis in Sulfonate Flotation of Quartz, State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Technology Campus Station Socorro, New Mexico, Transactions of SME, 1963, vol. 226, pp. 449–454.

  5. Jiang, C.L., Wang, X.H., Parekh, B.K., and Leonard, J.W., The Surface and Solution Chemistry of Pyrite Flotation with Xanthate in the Presence of Iron Ions, Colloids Surf., A: Physicochem. Eng. Aspects, 1998, vol. 136, pp. 51–62.

    CAS  Google Scholar 

  6. Kondrat’ev, S.A. and Konovalov, I.A., Effect of Physisorption of Collecting Agent on Flotation of Pyrite in the Presence of Fe2+ and Fe3+ Ions, Journal of Mining Science, 2022, vol. 58, no. 1, pp. 105–114.

    Google Scholar 

  7. Kondrat’ev, S.A. and Konovalov, I.A., Effect of Collector Physisorption on Flotation of Galena with Xanthate and Pb2+, Journal of Mining Science, 2023, vol. 59, no. 4, pp. 628–637.

    Google Scholar 

  8. Chen, P., Zhai, J., Sun, W., Hu, Y., and Yin, Z., The Activation Mechanism of Lead Ions in the Flotation of Ilmenite Using Sodium Oleate as a Collector, Min. Eng., 2017, vol. 111, pp. 100–107.

    CAS  Google Scholar 

  9. Hukki R.T., Palomaki A., and Orivouri E, Electrophoretic Investigation of the Activation of Sphalerite by Copper Sulfate in Flotation, Suomen Kemistilehti, 1952, vol. B 25, p. 42.

    Google Scholar 

  10. Salatic D., Pustic A., and Djakovic D., Proceeding IMPC XI, Special Issue, 1975, Cagliari, 1975, Int. Miner. Proc. Congr., Cagliari, Sardinia, 1975.

  11. Ejtemaei, M., Irannajad, M., and Gharabaghi, M., Role of Dissolved Mineral Species in Selective Flotation of Smithsonite from Quartz Using Oleate as Collector, Int. J. Min. Proc., 2012, vol. 114–117, pp. 40–47.

    Google Scholar 

  12. Clarke, P., Arora, P., Fornasiero, D., Ralston, J., and Smart, R., Separation of Chalcopyrite or Galena from Sphalerite: A Flotation and X-Ray Photoelectron Spectroscopic Study, in: Mehrotra, S.P., Shekhar, Rajiv (Eds.), Mineral Processing: Recent Advances and Future Trends, Allied Publishers Limited, New Delhi, 1995.

  13. Liu, C., Zhu, G., Song, S., and Li, H., Flotation Separation of Smithsonite from Quartz Using Calcium Lignosulphonate as a Depressant and Sodium Oleate as a Collector, Min. Eng., 2019, vol. 131, pp. 385–391.

    CAS  Google Scholar 

  14. Kondrat’ev, S.A., Selecting Collecting Agents for Flotation, Journal of Mining Science, 2022, vol. 58, no. 5, pp. 796–811.

    Google Scholar 

  15. Fuerstenau, M.C., Miller, J.D., Pray, R.E., and Perinne, B.F., Metal Ion Activation in Xanthate Flotation of Quartz, AIME Transactions, 1966, vol. 235, pp. 359–365.

    Google Scholar 

  16. Liu, B., Wang, X., Du, H., Liu, J., Zheng, S., Zhang, Y., and Miller, J.D., The Surface Features of Lead Activation in Amyl Xanthate Flotation of Quartz, Int. J. Min. Proc., 2016, vol. 151, pp. 33–39.

    CAS  Google Scholar 

  17. Liu, W., Zhang, S., Wang, W., Zhang, J., Yan, W., Deng, J., Feng, Q., and Huang, Y., The Effects of Ca(II) and Mg(II) Ions on the Flotation of Spodumene Using NaOL, Miner. Eng, 2015, vol. 79, pp. 40–46.

    CAS  Google Scholar 

  18. Ananthapadmanabhan, K.P. and Somasundaran, P., Surface Precipitation of Inorganics and Surfactants and its Role in Adsorption and Flotation, Colloids Surf., 1985, vol. 13, pp. 151–167.

    CAS  Google Scholar 

  19. Fuerstenau, M.S., Rice, D.A., Somasundaran, P., and Fuerstenau, D.W., Metal Ion Hydrolysis and Surface Charge in Beryl Flotation, AIME Transactions, 1965, vol. 241, pp. 381–391.

    Google Scholar 

  20. Wang, Y.H. and Yu, F.S., Effects of Metallic Ions on the Flotation of Spodumene and Beryl, J. China University Min. and Technol., 2007, vol. 17, no.1, pp. 35–39.

    ADS  CAS  Google Scholar 

  21. Kanicky, J.R. and Shah, D.O., Effect of Degree, Type, and Position of Unsaturation on the PKA of Long-Chain Fatty Acids, J. Colloid and Interface Sci., 2002, vol. 256, pp. 201–207.

    ADS  CAS  PubMed  Google Scholar 

  22. Gao Z., Jiang Z., Sun W., and Gao Y. Typical Roles of Metal Ions in Mineral Flotation: A Review, The Nonferrous Metals Society of China, 2021, vol. 31, pp. 2081–2101.

    CAS  Google Scholar 

  23. Tian, M., Zhang, C., Han, H., Liu, R., Gao, Z., Chen, P., Wang, L., Li, Y., Ji, B., Hu, Y., and Sun, W., Effects of the Preassembly of Benzohydroxamic Acid with Fe (III) Ions on its Adsorption on Cassiterite Surface, Miner. Eng., 2018, vol. 127, pp. 32–41.

    CAS  Google Scholar 

  24. Tian, M., Hu, Y., Sun, W., and Liu, R., Study on the Mechanism and Application of a Novel Collector-Complexes in Cassiterite Flotation, Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 2017, vol. 522, pp. 635–641.

    CAS  Google Scholar 

  25. Han, H.S., Liu, W.L., Hu, Y.H., Sun, W., and Li, X.D., A Novel Flotation Scheme: Selective Flotation of Tungsten Minerals from Calcium Minerals Using Pb–BHA Complexes in Shizhuyuan, Rare Metals, 2017, vol. 36 (6), pp. 1–8.

    Google Scholar 

  26. Han, H., Hu, Y., Sun, W., Li, X., Cao, C., Liu, R., Yue, T., Meng, X., Guo, Y., Wang, J., Gao, Z., Chen, P., Huang, W., Liu, J., Xie, J., and Chen, Y., Fatty Acid Flotation versus BHA Flotation of Tungsten Minerals and Their Performance in Flotation Practice, Int. J. Miner. Proc., 2017, vol. 159, pp. 22–29.

    CAS  Google Scholar 

  27. Wang, J., Mao, Y., Cheng, Y., Xiao, Y., Zhang, Y., and Bai, J., Effect of Pb(II) on the Flotation Behavior of Scheelite Using Sodium Oleate as Collector, Miner. Eng., 2019, vol. 136, pp. 161–167.

    CAS  Google Scholar 

  28. Palsson B. and Forssberg Eric, K.S. Computer-Assisted Calculations of Thermodynamic Equilibria in Sphalerite-Xanthate Systems, Int. J. Miner. Proc., 1989, vol. 26, pp. 223–258.

    Google Scholar 

  29. Palsson B., and Forssberg Eric, K.S. Computer-Assisted Calculations of Thermodynamic Equilibria in the Galena-Ethyl Xanthate System, Int. J. Miner. Proc., 1988, vol. 23, pp. 93–121.

    Google Scholar 

  30. Wang X., Forssberg Eric, K.S., and Bolin, N.J. Thermodynamic Calculations on Iron-Containing Sulphide Mineral Flotation Systems, I. The Stability of Iron-Xanthates, Int. J. Miner. Proc., 1989, vol. 27, pp. 1–19.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kondrat’ev.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 6, pp. 105-116. https://doi.org/10.15372/FTPRPI20230611.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.A., Konovalov, I.A. & Gavrilova, T.G. Stimulation of Flotation Selectivity Using Physisorption Mechanism of Collectors. J Min Sci 59, 977–987 (2023). https://doi.org/10.1134/S106273912306011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106273912306011X

Keywords

Navigation