Skip to main content
Log in

Acoustic Characteristics of Rock Samples under Negative Temperatures

  • NEW METHODS AND INSTRUMENTS IN MINING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors investigate geophysical parameters of water-saturated and frozen rock samples, and compare the results with the data of natural rocks. The samples were subjected to dynamic loading, an acceleration signal was recorded and a spectral density was calculated. On this basis, later on, the authors determined the longitudinal vibration velocity, the logarithmic decrement of damping, the internal friction factor and the acoustic Q-factor. The water-saturated and frozen rock samples demonstrated the increased velocities of longitudinal vibrations. The samples, which had the high acoustic Q-factors in the frozen conditions, fractured under much higher loads. The degree of water saturation affected the strength of the test samples: their strength reduced with the higher water saturation. Freezing of the samples generated microseismic vibrations in the region of high frequencies. In the uniaxial compression tests to failure of the samples under critical loading, a high frequency signal was recorded during initiation of an extension fracture, and the signal spectrum shifted toward lower frequencies as the fracture grew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. Feucht, L.J. and Logan, J.M., Effects of Chemically Active Solutions on Shearing Behavior of a Sandstone, Tectonophysics, 1990, vol. 175, issue 1.

    Article  Google Scholar 

  2. Karfakis, M.G. and Akram, M., Effects of Chemical Solutions on Rock Fracturing, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 1993, vol. 30, issue 7.

  3. Dove, P.M., Geochemical Controls on the Kinetics of Quartz Fracture at Subcritical Tensile Stresses, J . Geoph. Res., 1995, vol. 100, issue B11.

    Article  Google Scholar 

  4. Li, N., Zhu, Y.M., Su, B., and Gunter, S., A Chemical Damage Model of Sandstone in Acid Solution, Int. J. Rock Mech. Min. Sci., 2003, vol. 40, issue 2.

    Article  Google Scholar 

  5. Erguler, Z.A. and Ulusay, R., Water–Induced Variations in Mechanical Properties of Clay–Bearing Rocks, Int. J. Rock Mech. Min. Sci., 2009, vol. 46, issue 2.

    Article  Google Scholar 

  6. Nara, Y., Hiroyoshi, N., Yoneda, T., and Kaneko, K., Effects of Relative Humidity and Temperature on Subcritical Crack Growth in Igneous Rock, Int. J. Rock Mech. Min. Sci., 2010, vol. 47, issue 4.

    Article  Google Scholar 

  7. Wasantha, P.L.P. and Ranjith, P.G., Water–Weakening Behavior of Hawkesbury Sandstone in Brittle Regime, Eng. Geol., 2014, vol. 178.

    Article  Google Scholar 

  8. Cherblanc, F., Berthonneau, J., Bromblet, P., and Huon, V., Influence of Water Content on the Mechanical Behavior of Limestone: Role of Clay Minerals Content, Rock Mech. Rock Eng., 2016, vol. 49.

    Article  Google Scholar 

  9. Hua, W., Dong, S., Li, Y., and Wang, Q., Effect of Cyclic Wetting and Drying on the Pure Mode in Fracture Toughness of Sandstone, Eng. Fracture Mech., 2016, vol. 153.

    Article  Google Scholar 

  10. Wong, L.N.Y., Maruvanchery, V., and Liu, G., Water Effects on Rock Strength and Stiffness Degradation, Acta Geotechnica, 2016, vol. 11.

    Article  Google Scholar 

  11. Zhao, Z., Yang, J., Zhang, D., and Peng, H., Effects of Wetting and Cyclic Wetting–Drying on Tensile Strength of Sandstone with a Low Clay Mineral Content, Rock Mech. Rock Eng., 2017, vol. 50.

    Article  Google Scholar 

  12. Zhao, C., Niu, J., Zhang, Q., Zhao, C., and Zhou, Y., Failure Characteristics of Rock–Like Materials with Single Flaws under Uniaxial Compression, Bull. Eng. Geol. Env. Vol., 2019, vol. 78.

    Article  Google Scholar 

  13. Qiao, L., Wang, Z., and Huang, A., Alteration of Mesoscopic Properties and Mechanical Behavior of Sandstone due to Hydro–Physical and Hydro–Chemical Effects, Rock Mech. Rock Eng., 2017, vol. 50.

    Article  Google Scholar 

  14. Mellor, M., Mechanical Properties of Rocks at Low Temperatures, Permafrost: North American Contribution to the Second International Conference, Yakutsk, USSR, 1973, Washington: National Academy of Sciences.

  15. Inada, Y. and Yokota, K., Some Studies of Low Temperature Rock Strength, Int. J. Rock Mech. Min. Sci. Geomech. Abs., 1983, vol. 21, issue 3.

  16. Sarkka, P. and Polla, J., Strength and Deformation Characteristics of a Gabbro Rock between −10 °C and −60 °C, Safety and Environmental Issues in Rock Engineering, Proc. Int. Symp. Eurock 1993, Rotterdam: A. A. Balkema, 1993, vol. 1.

  17. Yamabe, T. and Neaupane, K.M., Determination of Some Thermo–Mechanical Properties of Sirahama Sandstone under Subzero Temperature Condition, Int. J. Rock Mech. Min. Sci., 2001, vol. 38, issue 7.

    Article  Google Scholar 

  18. Liu, Q.S., Xu, G.M., Hu, Y.H., and Chang, X., Study on Basic Mechanical Behaviors of Rocks at Low Temperatures, Key Eng. Materials, 2006, vol. 306–308.

    Article  Google Scholar 

  19. Chen, Y., Azzam, R., Wang, M., Xu, S., and Chang, L., The Uniaxial Compressive and Tensile Tests of Frozen Saturated Clay in Shanghai Area, Env. Earth Sci., 2011, vol. 64, issue 1.

    Article  Google Scholar 

  20. Kodama, J., Goto, T., Fujii, Y., and Hagan, P., The Effects of Water Content, Temperature and Loading Rate on Strength and Failure Process of Frozen Rocks, Int. J. Rock Mech. Min. Sci., 2013, vol. 62.

    Article  Google Scholar 

  21. Al-Omari, A., Brunetaud, X., Beck, K., and Al-Mukhtar, M., Coupled Thermal–Hydric Characterization of Elastic Behavior for Soft and Porous Limestone, Construction Building Materials, 2014, vol. 62.

    Article  Google Scholar 

  22. Suknev, S.V., Determination of Elastic Properties of Rocks Under Varying Temperature, Journal of Mining Science, 2016, vol. 52, issue 2.

    Article  Google Scholar 

  23. Suknev, S.V., Influence of Temperature and Water Content on Elastic Properties of Hard Rocks in Thaw/Freeze State Transition, Journal of Mining Science, 2019, vol. 55, issue 22.

    Article  Google Scholar 

  24. Kutkin, Ya.O., Substantiation of Procedure for Correlating Acoustic Q-Factor and Strength in Rocks, Mining Informational and Analytical Bulletin—GIAB, 2014, no. 12, pp. 345–351.

  25. Kurilko, A.S. and Popov, V.I., Strength testing of Rocks after Cyclic Freeze-Thaw, Mining Informational and Analytical Bulletin—GIAB, 2004, no. 9.

  26. Voznesenky, A.S., Kutkin, Ya.O., and Krasilov, M.N., Interrelation of the Acoustic Q-Factor and Strength in Limestone, Journal of Mining Science, 2015, vol. 51, no. 1, pp. 23–30.

    Article  Google Scholar 

  27. Suknev, S.V., Procedure for Static Elasticity Modulus and Poisson’s Ratio in Samples under Change in Temperature, Mining Informational and Analytical Bulletin—GIAB, 2013, no. 8, pp. 101–105.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vostrikov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 3, pp. 192-200. https://doi.org/10.15372/FTPRPI20230320.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vostrikov, V.I., Tsoi, P.A. & Usol’tseva, O.M. Acoustic Characteristics of Rock Samples under Negative Temperatures. J Min Sci 59, 521–528 (2023). https://doi.org/10.1134/S1062739123030201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123030201

Keywords

Navigation