Skip to main content
Log in

The Assessment of Blast-Induced Dust in an Urban Site Quarry

  • MINING ECOLOGY AND SUBSOIL MANAGEMENT
  • Published:
Journal of Mining Science Aims and scope

Abstract

In the study, the particulate matter (PM) measurements were carried out during several blasting operations using a portable Cascade Impactor with eight particle size fractions. The particle mass size distribution was characterized for each blast shot. The PM dispersion trend equations were established for using the measurements collected from various distances in the downwind direction and classified for different fractions (respirable, thoracic, and inhalable) to assess the health risks. As an outcome of the study, the amount of dust generated in the blasting source was specified according to the blasting theory. The PM dispersion trends were established by evaluating measurement results. It was concluded that, PM decreases from gram to milligram grades in the first 100 m distance. All of the PM fractions ultimately settles at an approximate distance of 535 m and not spread out of the quarry pit. Regarding particle mass size distribution studies, blast-induced PM is classified as fine particles. The study has preceded features regarding both PM sampling during a blasting event and revealing PM fractions close to the blasting point. The context also provides a detailed comparison of the amount and characteristics of dust caused by blasting with other activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. Jimeno E., Jimeno C., and Carcedo F. Drilling and Blasting of Rocks, A. A. Balkema, Rotterdam, 1995.

  2. Trubetskoy, K.N. and Galchenko, Yu.P., Methodology for Estimating Promising Development Paradigm for Mineral Mining and Processing Industry, Journal of Mining Science, 2015, vol. 51, no. 2, pp. 407–415.

    Article  Google Scholar 

  3. Mikhailov, V.A., Beresnevich, P.V., Borisov, V.G., and Loboda, A.I., Bor’ba s pylyu v rudnykh kar’yerakh (Dust Control in Ore Mines), Moscow: Nedra, 1981.

    Google Scholar 

  4. Tyupin, V.N., Geomechanical Behavior of Jointed Rock Mass in the Large-Scale Blast Impact Zone, Eurasian Mining, 2020, no. 2, pp. 11–14.

    Article  Google Scholar 

  5. Whittaker, B.N., Singh, R.N., and Sun, G., Rock Fracture Mechanics Principles, Design and Applications, Amsterdam, Elsevier, 1992.

    Google Scholar 

  6. Viktorov, S.D., Blasting Destruction of Rock Masses is a Basis of Progress in Mining, Mining Informational and Analytical Bulletin—GIAB, 2015, no. S1.

  7. Esen, S., Onederra, I., and Bilgin, H.A., Modeling the Size of the Crushed Zone around a Blasthole, Julius Kruttschnitt Mineral Research Center, The University of Queensland, Brisbane, Qld, Australia Department of Min. Eng., Middle East Technical University, Ankara, Turkey Accepted, 2003.

  8. Adushkin, V.V., Spivak, A.A., Solov’ev, S.P., Pernik, L.M., and Kishkina, S.B., Geoecological Consequences of Massive Chemical Blasts in Open Pit Mines, Geoekologiya, 2000, no. 6, pp. 554–563.

  9. Adushkin, V.V., Solov’ev, S.P., and Shuvalov, V.V., Calculation of Dust Load from a Massive Blast at Lebedinsky MPP, Abstr. Int. Conf. Subsoil Development and Ecological Problems—Look into the 21st Century, Moscow, 2000.

  10. Adushkin, V.V., Solov’ev, S.P., Spivak, A.A., and Khazins, V.M., Open Pit Mining with Blasting: Geoecological Aftermath, Journal of Mining Science, 2020, vol. 56, no. 2, pp. 309–321.

    Article  Google Scholar 

  11. Kutuzov, B.N. and Tyupin, V.N., Determination of Damage Zones Induced by Blasting in Jointed Rock Mass, Izv. vuzov, Gornyi zhurnal, 1983, no. 4, pp. 53–58.

  12. Il’yushin, A.A., The Mechanics of a Continuous Medium, Moscow, 1999.

  13. Khazins, V.M., Solov’ev, S.P., Loktev, A.V., and Shuvalov, V.V., Nearsurface Air Layer Pollution with Micronic Dust Particles in Large-Scale Blasting in Open Pit Mining, Journal of Mining Science, 2022, vol. 58, no. 4, pp. 676–689.

    Article  Google Scholar 

  14. WHO. World Health Organization Global Air Quality, 2020. guidelineshttps://www.who.int.

  15. EPA. Availabel at: https://www.epa.gov/pm-pollution/particulate-matter-pm-basics. Accessed 29.03.2022.

  16. Sahin, U.A., Harrison, R.M., Alam, M.S., Beddows, D.C.S., Bousiotis, D., Shi, Z., Crilley, L.R., Bloss, W., Brean, J., Khanna, I., and Verma, R., Measurement Report: Interpretation of Wide Range Particulate Matter Size Distributions in Delhi, Atmospheric Chemistry and Physics, 2021.

  17. Arslan, H., Baltaci, H., Sahin, U.A., and Onat, B., The Relationship between Air Pollutants and Respiratory Diseases for the Western Turkiye, Atmospheric Pollution Res., 2022, vol. 13, no. 2. 101322.

    Article  Google Scholar 

  18. Harrison, R.M. and Yin, J., Particulate Matter in the Atmosphere: Which Particle Properties are Important for its Effects on Health? Sci. Total Env. Apr., 2000, vol. 17, no. 1–3, pp. 85–101.

    Article  Google Scholar 

  19. Onat, B., Sahin, U., and Akyuz, T., Elemental Characterization of PM2.5 and PM1 in Dense Traffic Area in Istanbul, Turkey, Atmospheric Pollution Res., 2013, vol. 4, no. 1, pp. 101–105.

    Article  Google Scholar 

  20. Dingenen R.V., Raes F., Putaud P., et al. A European Aerosol Phenomenology, Physical Characteristics of Particulate Matter at Kerbside, Urban, Rural and Background Sites in Europe, Atmos Environ, 2004, vol. 38, pp 2561–2577.

    Article  Google Scholar 

  21. Johansson C. and Johansson P.A. Particulate Matter in the Underground of Stockholm, Atmospheric Env., 2003, vol. 37, no. 1, pp 3–9.

    Article  Google Scholar 

  22. Sahin, U.A., Shcherbakova, K., and Onat, B., Size Distribution and Seasonal Variation of Airborne Particulate Matter in Five Areas in Istanbul, Turkiye, Env. Sci. Pollut. Res., 2012, vol. 19, no. 4, pp. 1198–1209.

    Article  Google Scholar 

  23. Sahin, U.A., Onat, B., Stakeeva, B., Ceran, T., and Karim, P., PM10 Concentrations and the Size Distribution of Cu and Fe-Containing Particles in Istanbul’s Subway System, Transp. Res., 2012, vol. 17, pp. 48–53.

    Article  Google Scholar 

  24. Onat, B. and Stakeeva, B., Assessment of Fine Particulate Matters in the Subway System of Istanbul, Indoor and Built. Env., 2014, vol. 23, no. 4, pp. 574–583.

    Article  Google Scholar 

  25. Abbasi B., Wang W., Chow J.C., Watson J.G., Peik B., Nasiri W., Riemenschnitter K.B., and Elahifard M. Review of Respirable Coal Mine Dust Characterization for Mass Concentration, Size Distribution and Chemical Composition, Minerals, 2021, vol. 11, p. 426.

    Article  Google Scholar 

  26. Ghose, M.K. and Majee, S.R., Characteristics of Hazardous Airborne Dust around an Indian Surface Coal Mining Area, Environ. Monit. Assess., 2007, vol. 130, pp. 17–25.

    Article  Google Scholar 

  27. Rubow, K.L., Cantrell, B.K., and Marple, V.A., Measurement of Coal Dust and Diesel Exhaust Aerosols in Underground Mines, Proc. of the 7th Int. Pneumoconioses Conf., Pittsburgh, PA, USA, 1988.

  28. Oparin, V.N., Potapov, V.P., Giniyatullina, O.L., et al., Evaluation of Dust Pollution of Air in Kuzbass Coal Mining Areas in Winter by Data of Remote Earth Sensing, Journal of Mining Science, 2014, vol. 50, no. 3, pp. 549–558.

    Article  Google Scholar 

  29. Örgün, Y., Yalçin, T., Bozkurtoğlu, E., Duman, E., Yiğitbaş, E., Kuzu, C., Nasuf, E., and Öztürk, A., İstanbul Çatalca Muratbey Civarında Yapılan Madencilik Faaliyetlerinin Büyük Çekmece Göl Havzasında Yeralan Yeraltı Yüzey Sularındave Çevreye, Olan Etkisi. Kuvaterner Çalıştayı IV. İTÜ Avrasya Yerbilimleri Enstitüsü, İstanbul, Turkiye, 2003.

  30. Yildirim, H., Technical Report, The Rectorate of Istanbul Technical University, Disaster Management Coordination Unit, 2020.

  31. Bralewska, K., Rogula-Kozlowska, W., Mucha, D., Badyda, A.J., Kostrzon, M., Bralewski, A., and Biedugnis, S., Wieliczka Salt Mine and Related Health Benefits for Tourists, Int. J. Env. Res. Public Health, 2022, vol. 19, no. 2, p. 826.

    Article  Google Scholar 

  32. Nagesha, K.V., Sastry, V.R., and Ram, C.K., Prediction of Dust Dispersion during Drilling Operation in Open Cast Coal Mines: A Multi Regression Model, Int. J. Env. Sci., 2016, vol. 6, no. 5, pp. 681–696.

    Google Scholar 

  33. Heitbrink, W.A., In-depth Study Report: Control Technology for Crystalline Silica Exposures in Construction, Exposures and Preliminary Control Evaluation, Report no. ECTB NO 247-12. NIOSH, Cincinnati, OH, 2000.

  34. Nash, N.T. and Williams, D.R., Occupational Exposure to Crystalline Silica during Tuckpointing and the Use of Engineering Controls, Appl. Occup. Environ. Hyg., 200, vol. 15, no. 1, pp. 8–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulku Kalayci Sahinoglu.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 3, pp. 182-191. https://doi.org/10.15372/FTPRPI20230319.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahinoglu, U.K. The Assessment of Blast-Induced Dust in an Urban Site Quarry. J Min Sci 59, 511–520 (2023). https://doi.org/10.1134/S1062739123030195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123030195

Keywords

Navigation