Skip to main content
Log in

Functionalized Magnetic Nanosorbents for Copper Extraction from Solutions

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article proves the promising nature of using functionalized magnetic nano particles in extraction of metals from process solutions and in treatment of industrial effluents. The experimental copper extraction from solutions using a magnetic nanosorbent made of lipoic acid-functionalized magnetite is described. Sorption efficiency is determined as function of the initial concentration of solutions as compared with non-functionalized nano-size magnetite. The copper-bearing sedimentation mechanism includes chemosorption at active centers of lipoic acid, adsorption at clean magnetite surface and re-crystallization of sorbate in intrinsic copper-bearing phases. The phase composition of copper in the sediments is examined, and the copper extractability is illustrated. The conditioning technology is proposed for copper-bearing solutions. The stage-wise use of the magnetic nanosorbent enables process solution purification up to the maximum allowable concentration at simultaneous production of a concentrate suitable for hydrometallurgical processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Gromov, V.F., Gerasimov, G.N., Ikim, M.I., Spiridonova, E.Yu., and Trakhtenberg, L.I., Metal Ion Sorption from Aqueous Solutions Using Crown Ethers, Khim. Fizika, 2020, vol. 39, no. 5, pp. 59–65.

    Google Scholar 

  2. Zinicovscaia, I., Yushin, N., Abdusamadzoda, D., Grozdov, D., and Shvetsova, M., Efficient Removal of Metals from Synthetic and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast Saccharomyces Cerevisiae, Materials, 2020, vol. 13, pp. 1–17.

  3. Kononova, O.N., Fyodorova, N.V., Kachin, S.V., and Kholmogorov, A.G., Sorption of Copper (II) from Aqueous Solutions on Complexing Ion Exchangers and Determination of Copper by Diffuse Reflectance Spectroscopy, J. Siberian Federal University. Chemistry, 2009, no. 3, pp. 195–209.

    Google Scholar 

  4. Kairalapova, G.Zh., Iminova, R.S., and Baimyrza, P., A Method to Remove Heavy Metal Ions from Effluents, Vodoochistka, 2021, no. 10, pp. 123–127.

  5. Bochkarev, G.R. and Pushkareva, G.I., Strontium Removal from Aqueous Media by Natural and Modified Sorbents, Journal of Mining Science, 2009, vol. 45, no. 3, pp. 290–294.

    Article  Google Scholar 

  6. Naboichenko, S.S., Ageev, N.G., Karelov, S.V., Mamyachenkov, S.V., and Sergeev, V.A., Protsessy i apparaty tsvetnoi metallurgii (Processes and Equipment of Nonferrous Metallurgy), Yekaterinburg: UFU, 2013.

    Google Scholar 

  7. Liosis, C., Papadopoulou, A., Karvelas, E., Karakasidis, T.E., and Sarris, I.E., Heavy Metal Adsorption Using Magnetic Nanoparticles for Water Purification: A Critical Review, Materials, 2021, vol. 14, pp. 1–45.

    Article  Google Scholar 

  8. Shen, W.Z., Cetinel, S., Sharma, K., Borujeny, E.R., and Montemagno, C., Peptide-Functionalized Iron Oxide Magnetic Nanoparticle for Gold Mining, J. Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology, 2017, vol. 19, no. 2, pp. 1–12.

    Article  Google Scholar 

  9. Condomitti, U., Zuin, A., Silveira, A.T., Araki, K., and Toma, H.E., Magnetic Nanohydrometallurgy: A Promising Nanotechnological Approach for Metal Production and Recovery Using Functionalized Superparamagnetic Nanoparticles, Hydrometallurgy, 2012, vol. 125–126, pp. 148–151.

    Article  Google Scholar 

  10. Toma, H.E., Magnetic Nanohydrometallurgy: A Nanotechnological Approach to Elemental Sustainability, Green Chemistry, 2015, vol. 17, pp. 2027–2041.

    Article  Google Scholar 

  11. Almeida S. da N. and Toma, H.E., Neodymium (III) and Lanthanum (III) Separation by Magnetic Nanohydrometallurgy Using DTPA Functionalized Magnetite Nanoparticles, Hydrometallurgy, 2016, vol. 161, pp. 22–28.

    Article  Google Scholar 

  12. Melo, F.M., Silveira, A.T., Quartarolli, L.F., Kaid, F.F., Cornejo, D.R., and Toma, H.E., Magnetic Behavior of Superparamagnetic Nanoparticles Containing Chelated Transition Metal Ions, J. Magnetism Magnetic Materials, 2019, vol. 487, pp. 1–7.

    Article  Google Scholar 

  13. Almeida S. da N. and Toma, H.E., Lanthanide Ion Processing from Monazite Based on Magnetic Nanohydrometallurgy, Hydrometallurgy, 2019, vol. 189, pp. 1–6.

    Google Scholar 

  14. Quartarolli, L.F., Brandão, B.B.N.S., Silveira-Júnior, A.T., Nakamura, M., and Toma, H.E., Improving the Lithium Recovery Using Leached Beta-Spodumene Residues Processed by Magnetic Nanohydrometallurgy, Miner. Eng., 2022, vol. 186, pp. 1–8.

    Article  Google Scholar 

  15. Mattioni, J.V., Franciscato, D.S., Melo, F.M., Sihn, L.M., Brandão, B.B.N.S., Condomitti, U., Nakamura, M., and Toma, H.E., Nanohydrometallurgical Extraction of Gold Based on Ranelate-Induced Nanoparticles Formation, Hydrometallurgy, 2022, vol. 213, p. 25.

    Article  Google Scholar 

  16. Hoang, Ch.T, Yurmazova, T.A., and Vaitulevich, E.A., Magnetite with Modified Surface for Water Treatment, Izv. TPU. Inzhiniring georesursov, 2019, vol. 330, no. 8, pp. 163–172.

    Google Scholar 

  17. Liosis, C., Karvelas, E.G., Karakasidis, T., and Sarris, I.E., Numerical Study of Magnetic Particles Mixing in Waste Water under an External Magnetic Field, J. Water Supply Res. Technol., 2020, vol. 69, pp. 266–275.

    Article  Google Scholar 

  18. Karvelas, E., Liosis, C., Karakasidis, T., and Sarris, I., Micromixing Nanoparticles and Contaminated Water under Different Velocities for Optimum Heavy Metal Ions Adsorption, Env. Sci. Proc., 2020, vol. 2, p. 65.

    Google Scholar 

  19. Romanenko, A.V., Maslova, N.V., and Chetverikova, Yu.S., Using Functionalized Magnetic Nanoparticles to Extract Nonferrous and Noble Metals from Solutions. Current Problems of Comprehensive Processing of Rebellious Ore and Manmade Minerals (Plaksin’s Lectures–2017), Krasnoyarsk: SFU, 2017.

  20. Ilyina, E.D. and Osipova, E.A., Magnetite-Based Nanoparticles as Promising Sorbents (Review), Proc. 10th All-Russian Sci. Pract. Conf. on Ecological Problems of the Southern Urals, Orenburg: OGU, 2021.

  21. Trieu, Q.An, Pellet-Rostaing, S., Arrachart, G., Traore, Y., Kimbel, S., and Daniele, S., Interfacial Study of Surface-Modified ZrO2 Nanoparticles with Thioctic Acid for the Selective Recovery of Palladium and Gold from Electronic Industrial Wastewater, Separation Purification Technol., 2020, vol. 237. — 116353.

    Article  Google Scholar 

  22. Fang, Zh., Liu, L., Xu, L., Yin, X., and Zhong, X., Synthesis of Highly Stable Dihydrolipoic Acid Capped Water-Soluble CdTe Nanocrystals, Nanotechnology, 2008, vol. 19, pp. 1–7.

    Article  Google Scholar 

  23. Romanenko, A.V., Bragin, V.I., Baksheyeva, I.I., Rostovtsev, V.I., and Zhizhayev, A.M., Extraction of Colloidal Gold from Solutions, J. Siberian Federal University. Chemistry, 2016, no. 4, pp. 504–514.

  24. Zuo, X., Cheng, Yu., Xu, L., Chen, R., Liu, F., Zhang, H., and Mai, L., A Novel Thioctic Acid-Functionalized Hybrid Network for Solid-State Batteries, Energy Storage Materials, 2022, vol. 46, pp. 570–576.

    Article  Google Scholar 

  25. Razak, N.F.A., Shamsuddin, M., and Lee, S.L., Adsorption Kinetics and Thermodynamics Studies of Gold (III) Ions Using Thioctic Acid Functionalized Silica Coated Magnetite Nanoparticles, Chemic. Eng. Res. Design, 2018, vol. 130, pp. 18–28.

    Article  Google Scholar 

  26. Racuciu, M., Creang, D.E., and Airinei, A., Citric Acid Coated Magnetite Nanoparticles for Biological Applications, The European Physica J., E. Soft Matter, 2006, vol. 21, pp. 117–121.

    Article  Google Scholar 

  27. Karaog̃lu, E., Baykal, A., Erdemi, H., Alpsoy, L., and Sozeri, H., Synthesis and Characterization of DL-Thioctic Acid (DLTA)—Fe3O4 Nanocomposite, J. Alloys Compounds, 2011, vol. 509, no. 37, pp. 9218–9225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Baksheeva.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 2, pp. 134-143. https://doi.org/10.15372/FTPRPI20230213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, V.I., Baksheeva, I.A., Plotnikova, A.A. et al. Functionalized Magnetic Nanosorbents for Copper Extraction from Solutions. J Min Sci 59, 302–310 (2023). https://doi.org/10.1134/S1062739123020138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123020138

Keywords

Navigation