Skip to main content
Log in

Influence of Natural Additive on Slurryability and Flowability of Iron Ore

  • MINERAL MINING TECHNOLOGY
  • Published:
Journal of Mining Science Aims and scope

Abstract

The present article describes the extensive characterization and stabilization of concentrated iron ore suspension having size \(\le 75~\mu\)m by various bench-scale tests. The rheological characteristics of iron ore in the concentration range of 60–80% (by wt.) have been investigated with and without the addition of Sapindus Mukorossidispersant. The stability of iron ore suspension with saponin is established through rheological properties, dispersant concentration and stabilization mechanism. The nature of experimental rheological data at different shear rates is accomplished by regression analysis and found to be a good fit with Herschel–Bulkley model. The Critical Micellar Concentration of the aqueous extracted dispersant is 0.018 g/cc. The presence of Sapindus Mukorossi saponin greatly improved the slurryability and stability of iron ore suspension. The head loss and specific energy consumption analysis successfully evidence the economic relevance of the surfactants in transporting the slurry through the pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. Usui, H., Li, L., and Suzuki, H., Rheology and Pipeline Transportation of Dense Fly Ash-Water Slurry, Korea–Australia Rheology J., 2001, vol. 13, no. 1, pp. 47–54.

    Google Scholar 

  2. Paterson, A.J.C., Pipeline Transport of High Density Slurries: A Historical Review of Past Mistakes, Lessons Learned and Current Technologies, Min. Technol., 2012, vol. 121, no. 1, pp. 37–45.

    Article  Google Scholar 

  3. Thomas, A.D. and Cowper, N.T., The Design of Slurry Pipelines–Historical Aspects, In Proc. Hydrotransport, 2017, vol. 20, pp. 7–22.

  4. Cruz, N., Forster, J., and Bobicki, E.R., Slurry Rheology in Mineral Processing Unit Operations: A Critical Review, The Canadian J. Chemical Eng., 2019, vol. 97, no. 7, pp. 2102–2120.

    Article  Google Scholar 

  5. Silva, R.C., Experimental Characterization Techniques for Solid-Liquid Slurry Flows in Pipelines: A Review, Proc., 2022, vol. 10, no. 3, p. 597.

    Article  Google Scholar 

  6. Vieira, M.G. and Peres, A.E.C., Effect of Rheology and Dispersion Degree on the Regrinding of an Iron Ore Concentrate, J. Mater. Res. Technol., 2013, vol. 2, no. 4, pp. 332–339.

    Article  Google Scholar 

  7. Sahoo, B.K., Das, T.K., Gupta, A., De, S., Carsky, M. and Meikap, B.C., Application of Response Surface Analysis to Iron Ore Slurry Rheology Using Microwave Pre-Treatment, South African J. Chemical Eng., 2017, vol. 23, no. 1, pp. 81–90.

    Article  Google Scholar 

  8. Melorie, A.K. and Kaushal, D.R., Experimental Investigations of the Effect of Chemical Additives on the Rheological Properties of Highly Concentrated Iron Ore Slurries, KONA Powder and Particle J., 2018, vol. 35, pp. 186–199.

    Article  Google Scholar 

  9. Abro, M.I., Pathan, A.G., Andreas, B., and Mallah, A.H., Effect of Various Parameters on the Dispersion of Ultrafine Iron Ore Slurry, P. 2, Pakistan J. Analytical and Env. Chemistry, 2010, vol. 11, no. 2, p. 5.

    Google Scholar 

  10. Mabuza, N.T., Pocock, J., and Loveday, B.K., The Use of Surface Active Chemicals in Heavy Medium Viscosity Reduction, Minerals Eng., 2005, vol. 18, pp. 25–31.

    Article  Google Scholar 

  11. Kumar, S., Singh, M., Singh, J., et al., Rheological Characteristics of Uni/Bi-Variant Particulate Iron Ore Slurry: Artificial Neural Network Approach, Journal of Mining Science, 2019, vol. 55, no. 2, pp. 201–212.

    Article  Google Scholar 

  12. Singh, H., Kumar, S., Mohapatra, S.K., Prasad, S.B., and Singh. J., Slurryability and Flowability of Coal Water Slurry: Effect of Particle Size Distribution, J. Cleaner Prod., 2021, vol. 323, pp. 129-183.

    Article  Google Scholar 

  13. Mosa, E.S., Saleh, A.M., Taha, A.T., El-Molla, A.M., and Abdel-Rasoul, E.I., A Study on the Effect of Slurry Temperature, Slurry pH and Particle Degradation on Rheology and Pressure Drop of Coal Water Slurries, J. Archive, 2021, vol. 49.

  14. Shkuratnik, V.L., Kravchenko, O.S., and Filimonov, Yu.L., Stresses and Temperature Affecting Acoustic Emission and Rheological Characteristics of Rock Salt, Journal of Mining Science, 2019, vol. 55, no. 4, pp. 531–537.

    Article  Google Scholar 

  15. Singh, M., Kumar, S., Kumar, S., Nandan, G., and Gupta, M., Characterization of Iron-Ore Suspension at In-Situ Conditions, Materials Today: Proc., 2018, vol. 5, no. 9, pp. 17845–17851.

    Google Scholar 

  16. Anushenkov, A.N., Rostovtsev, V.I., and Frizorger, V.K., Modification of Coal Tar Pitch in Hydropercussion-Cavitation Field, Journal of Mining Science, 2009, vol. 45, no. 5, pp. 509-516.

    Article  Google Scholar 

  17. Lavrinenko, A.A. and Gol’berg, G.Yu., Flow Regime of Mineral Suspensions with Preserved Structure of Flocs, Journal of Mining Science, 2019, vol. 55, no. 3, pp. 437–443.

    Article  Google Scholar 

  18. Svarovsky, L. and Thew, M.T. (eds.), Hydrocyclones: Analysis and Applications (Vol. 12), Springer Science & Business Media, 1992.

    Book  Google Scholar 

  19. Senapati, P.K., Das, D., Nayak, A., and Mishra, P.K., Studies on Preparation of Coal Water Slurry Using a Natural Additive, Energy Sources, Part A, 2008, vol. 30, no. 19, pp. 1788–1796.

    Article  Google Scholar 

  20. Routray, A., Das, D., Parhi, P.K., and Padhy, M.K., Characterization, Stabilization, and Study of Mechanism of Coal-Water Slurry Using Sapindous Mukorossi as an Additive, Energy Sources, Part A: Recovery, Utilization, and Env. Effects, 2018, vol. 40, no. 20, pp. 2502–2509.

    Article  Google Scholar 

  21. Assefa, K.M. and Kaushal, D.R., The Influence of Chemical Additives on the Flow Behaviors of Solid-Liquid Suspensions: A Review, In Conference Proc. of RACEE-2015, Int. J. Eng. Res. Technol., 2015, vol. 4, pp. 180–185.

  22. Khamzina, T.A. and Kondrat’ev, S.A., Activity of Different Chemistry Agents in Flotation of Difficult Slack Coal, Journal of Mining Science, 2021, vol. 57, no. 4, pp. 645–653.

    Article  Google Scholar 

  23. Kumar, S., Determination of Pressure Drop Characteristics of Fly Ash Suspension with Additive for Hydraulic Transportation, J. of Applied Fluid Mech., 2018, vol. 11, no. 5, pp. 1387–1393.

    Article  Google Scholar 

  24. Routray, A., Senapati, P.K., Padhy. M., and Das, D., Effect of Mixture of Natural and Synthetic Surfactant and Particle Size Distribution for Stabilized High-Concentrated Coal Water Slurry, Int. J. of Coal Preparation and Utilization, 2019.

  25. Behera, U., Das, S.K., Mishra, D.P., Parhi, P.K., and Das, D., Sustainable Transportation, Leaching, Stabilization, and Disposal of Fly Ash Using a Mixture of Natural Surfactant and Sodium Silicate, ACS Omega, 2021, vol. 6, no. 35, pp. 22820–22830.

    Article  Google Scholar 

  26. Routray, A., Senapati, P.K., Padhy, M., Das, D., and Mohapatra, R.K., Effect of Mixture of a Non-Ionic and a Cationic Surfactant for Preparation of Stabilized High Concentration Coal Water Slurry, Int. J. of Coal Preparation and Utilization, 2022, vol. 42, no. 3, pp. 925–940.

    Article  Google Scholar 

  27. Das, D., Das, S.K., Parhi, P.K., Dan, A.K., Mishra, S., and Misra, P.K., Green Strategies in Formulating, Stabilizing and Pipeline Transportation of Coal Water Slurry in the Framework of WATER-ENERGY NEXUS: A State of the Art Review, Energy Nexus, 2021, vol. 4, p. 100025.

    Article  Google Scholar 

  28. Wang, S., Liu, J., Pisupati, S.V., Li, D., Wang, Z., and Cheng, J., Dispersion Mechanism of Coal Water Slurry Prepared by Mixing Various High-Concentration Organic Waste Liquids, Fuel, 2021, vol. 287, p. 119340.

    Article  Google Scholar 

  29. Tang, M. and Wen, S., Adsorption Characteristics of Starch Digested with Alkali on Fine Hematite Particles, Journal of Mining Science, 2019, vol. 55, no.3, pp. 469–476.

    Article  Google Scholar 

  30. Burdukov, A.P., Konovalov, V.V., Popov, V.I. et al., Rheological Properties and Characteristics of Hydraulic Transportation and Heat-Mass Exchange of Coal-Water Fuels, Journal of Mining Science, 2002, vol. 38, no. 3, pp. 220–228.

    Article  Google Scholar 

  31. Snyder, L.R., Interactions Responsible for the Selective Adsorption of Nonionic Organic Compounds on Alumina, Comparisons with Adsorption on Silica, J. Phys. Chemistry, 1968, vol. 72, no. 2, pp. 489–494.

    Article  Google Scholar 

  32. Somasundaran, P., Fu, E., and Xu, Q., Coadsorption of Anionic and Nonionic Surfactant Mixtures at the Alumina–Water Interface, Langmuir, 1992, vol. 8, no. 4, pp. 1065–1069.

    Article  Google Scholar 

  33. Das, D., Panigrahi, S., Misra, P.K., and Nayak, A., Effect of Organized Assemblies. Part 4. Formulation of Highly Concentrated Coal–Water Slurry Using a Natural Surfactant, Energy and Fuels, 2008, vol. 22, no. 3, pp. 1865–1872.

    Article  Google Scholar 

  34. Das, D., Mohapatra, R.K., Belbsir, H., Routray, A., Parhi, P.K., and El-Hami, K., Combined Effect of Natural Dispersant and a Stabilizer in Formulation of High Concentration Coal Water Slurry: Experimental and Rheological Modeling, J. Molecular Liquids, 2020, vol. 320, p. 114441.

    Article  Google Scholar 

  35. Huang, J., Xu, J., Wang, D., Li, L., and Guo, X., Effects of Amphiphilic Copolymer Dispersants on Rheology and Stability of Coal Water Slurry, Industrial and Eng. Chemistry Research, 2013, vol. 52, no. 25, pp. 8427–8435.

    Article  Google Scholar 

  36. Das, D., Dash, U., Meher, J., and Misra, P.K., Improving Stability of Concentrated Coal–Water Slurry Using Mixture of a Natural and Synthetic Surfactants, Fuel Proc. Technol., 2013, vol. 113, pp. 41–51.

    Article  Google Scholar 

  37. Das, D., Pattanaik, S., Parhi, P.K., Mohapatra, R.K., Jyothi, R.K., Lee, J.Y., and Kim, H.I., Stabilization and Rheological Behavior of Fly Ash–Water Slurry Using a Natural Dispersant in Pipeline Transportation, ACS Omega, 2019, vol. 4, no. 25, pp. 21604–21611.

    Article  Google Scholar 

  38. Senapati, P.K., Pothal, J.K., Barik, R., Kumar, R., and Bhatnagar, S.K., Effect of Particle Size, Blend Ratio and Some Selective Bio–Additives on Rheological Behavior of High-Concentration Iron Ore Slurry, In Paste 2018, Proc. of the 21st Int. Seminar on Paste and Thickened Tailings, Australian Centre for Geomechanics, 2018.

  39. Silva, R., Garcia, F.A., Faia, P.M., and Rasteiro, M.G., Settling Suspensions Flow Modeling: A Review, KONA Powder and Particle J., 2015, p. 2015009.

  40. Addie, G.R., Slurry Pipeline Design for Operation with Centrifugal Pumps, Proc. of the 13th Int. Pump Users Symposium, Texas A&M University, Turbomachinery Laboratories, 1996.

  41. Shrimali, K., Jin, J., Hassas, B.V., Wang, X., and Miller, J.D., The Surface State of Hematite and its Wetting Characteristics, J. Colloid and Interface Sci., 2016, vol. 477, pp. 16–24.

    Article  Google Scholar 

  42. Qiu, G., Jiang, T., Fa, K., Zhu, D., and Wang, D., Interfacial Characterizations of Iron Ore Concentrates Affected by Binders, Powder Technol., 2004, vol. 139, no. 1, pp. 1–6.

    Article  Google Scholar 

  43. Mohammed, I., Al Shehri, D., Mahmoud, M., Kamal, M.S., and Alade, O.S., Impact of Iron Minerals in Promoting Wettability Alterations in Reservoir Formations, ACS Omega, 2021, vol. 6, no. 5, pp. 4022–4033.

    Article  Google Scholar 

  44. Hurwitz, G., Guillen, G.R., and Hoek, E.M., Probing Polyamide Membrane Surface Charge, Zeta Potential, Wettability, and Hydrophilicity with Contact Angle Measurements, J. Membrane Sci., 2010, vol. 349, no. 1–2, pp. 349–357.

    Article  Google Scholar 

  45. Bassioni, G. and Taha Taqvi, S., Wettability Studies Using Zeta Potential Measurements, J. Chemistry, 2015.

  46. Taqvi, S. and Bassioni, G., Understanding Wettability through Zeta Potential Measurements, Wettability and Interfacial Phenomena—Implications for Material Proc., 2019.

    Google Scholar 

  47. Kelessidis, V.C., Dalamarinis, P., and Maglione, R., Experimental Study and Predictions of Pressure Losses of Fluids Modeled as Herschel–Bulkley in Concentric and Eccentric Annuli in Laminar, Transitional and Turbulent Flows, J. Petroleum Sci. and Eng., 2011, vol. 77, no. 3–4, pp. 305–312.

    Article  Google Scholar 

  48. Hashemi, S.A., Wilson, K. C., and Sanders, R. S., Specific Energy Consumption and Optimum Operating Condition for Coarse-Particle Slurries, Powder Technol., 2014, vol. 262, pp. 183–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Gupta.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 2, pp. 68-81. https://doi.org/10.15372/FTPRPI20230207.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, C., Kumar, S. Influence of Natural Additive on Slurryability and Flowability of Iron Ore. J Min Sci 59, 242–255 (2023). https://doi.org/10.1134/S1062739123020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123020072

Keywords

Navigation