Skip to main content
Log in

Improvement of Mining and Processing Flowsheets at Structurally Complex Ore Deposits

  • MINERAL MINING TECHNOLOGY
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article describes the integrated analytical studies and geotechnical assaying of blasted ore samples with size classification at a gold deposit. The parameters of mixed fractions for processing using different technologies are determined. The ore mining and processing flowsheet is developed for a structurally complex extraction block. An improved technology is proposed for the structurally complex ore deposit. Selective ore extraction is followed with screening and size classification into fractions with high and low contents of useful component. The fractions are blended, the blend with the high content of useful component is subjected to flotation, and the blend with the low content of useful component goes to heap leaching. The fraction with the increased content of useful component from rich ore is treated by two-stage sorption and leaching pre-oxidation, which ensures high metal recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

REFERENCES

  1. Tkach, S.M. and Batugin, S.A., One of The Current Trends of Geotechnology Modernization, J. Fundament. Appl. Min. Sci., 2016, vol. 3, no. 1, pp. 206–212.

    Google Scholar 

  2. Batugin, S.A. and Cherny, E.D., Teoreticheskie osnovy oprobyvaniya i otsenki zapasov mestorozhdenii (Theoretical Framework of Sampling and Appraisal of Mineral Reserves), Novosibirsk: Nauka, 1998.

    Google Scholar 

  3. Dimitrakopoulos, R., Orebody Modeling and Strategic Mine Planning: Old and New Dimensions in a Changing World, Proc. Int. Symp., Western Australia, 2009.

  4. Menabde, M., Froyland, G., Stone, P., and Yeates, G., Mining Schedule Optimization for Conditionally Simulated Orebodies, Orebody Modeling and Strategic Mine Planning, Spectrum Series, 2007, pp. 91–100.

  5. Revnivtsev, V.I., Azbel’, E.I., and Baranov, E.G., Podgotovka mineral’nogo syr’ya k obogashcheniyu i pererabotke (Preparation of Mineral Raw Materials for Processing and Conversion), Moscow: Nedra, 1987.

    Google Scholar 

  6. Batraliev, R.Sh., Okhrimenko, A.V., and Turtygina, N.A., Conceptual Structure of On-Line Information and Control System toward Stabilization ofoOre Flow Quality, Gornyi Zjurnal, 2022, no. 10, pp. 91–96.

  7. Trubetskoy, K.N., Kaplunov, D.R., Viktorov, S.D., Ryl’nikova, M.V., and Radhcneko, D.N., Scientific Rationale of Technologies for Comprehensive Resource-Saving Exploitation of Strategic Mineral Resources, Mining Informational and Analytical Bulletin—GIAB, 2014, no. 12, pp. 5–12.

  8. Trubetskoy, K.N., Kaplunov, D.R., Ryl’nikova, M.V., and Radhcneko, D.N., New Approaches to Designing Resource-Reproducing Technologies for Comprehensive Extraction of Ores, Journal of Mining Science, 2011, vol. 47, no. 3, pp. 317–323.

    Article  Google Scholar 

  9. Kurlenya, M.V., Deep-Level Mineral Mining in Siberia and Russian Far East: Actual Objectives and Trends of Research, Journal of Mining Science, 2021, vol. 57, no. 4, pp. 539–545.

    Article  Google Scholar 

  10. Bolchenko, G.N., Seryakov, V.M., and Fyanov, V.N., Geomechanical Substantiation of the Resource-Saving Alternatives of the Induced Block Caving Methods, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 709–716.

    Article  Google Scholar 

  11. Wu, J., Ahn, J., and Lee, J., Comparative Leaching Study on Conichalcite and Chalcopyrite under Different Leaching Systems, Korean J. Metal. Materials, 2019, vol. 57, vo. 4, pp. 245–250.

    Article  Google Scholar 

  12. Rakhmanov, R.A., Loeb, D., and Kosukhin, N.I., Estimate of Ore Boundary Displacements after Blasting Using VMM-System, Zapiski Gorn. Inst., 2020, vol. 245, pp. 547–553.

    Google Scholar 

  13. Metel’sky, A.A. and Gambal’, M.Yu., Reduction of Ore Loss and Dilution. Experience of Using VMM-System at Polyus Krasnoyarsk, Zoloto i tekhnologii, 2021, no. 4, pp. 148–153.

  14. Rasskazov, I.Yu., Cheban, A.Yu. and Litvintsev, V.S., Analysis of Equipment of Mining Enterprises of Khabarovsk Krai and Jewish Autonomous Region, Gornyi Zhurnal, 2013, no. 2, pp. 30–34.

  15. Chanturia, V.A., Samusev, A.L., and Minenko, Stimulation of Chemical and Electrochemical Leaching of Gold from Rebellious Minerals, Journal of Mining Science, 2020, vol. 56, no. 5, pp. 818–827.

    Article  Google Scholar 

  16. Rostovtsev, V.I., Kondrat’ev, S.A., and Baksheeva, I.I., Improvement of Copper–Nickel Ore Concentration under Energy Deposition, Journal of Mining Science, 2017, vol. 53, no. 5, pp. 907–914.

    Article  Google Scholar 

  17. Afum, B.O., Ben-Awuah, E., and Askari-Nasab, H., A Mixed Integer Linear Programming Framework for Optimizing the Extraction Strategy of Open Pit–Underground Mining Options and Transitions, Int. J. Min. Reclamation Env., 2019, vol. 34, no. 10, pp. 700–724.

    Article  Google Scholar 

  18. Golik, V.I., Ore Preparation for Heap Leaching, Izv. TGU. Nauki o Zemle, 2021, no. 4, pp. 322–330.

  19. Rasskazov, I.Yu., Sekisov, A.G., and Rasskazova, A.V., In-Situ Molybdenum and Uranium Leaching Using Percarbonate and Chloride–Hyperchloritic Solutions, Zapiski Gorn. Inst., 2022, vol. 256, pp. 623–631.

    Google Scholar 

  20. Sekisov, A.G., Shevchenko, Yu.S., and Lavrov, A.Yu., Explosion Injection Approach to Ore Preparation to Leaching, Fundamental Problems of Geoenvironment Formation under Industrial Impact: Conference Proceedings, 2012, pp. 125–132.

  21. Golik, V.I., Razorenov, Yu.I., Komashchenko, V.I., and Burdzieva, O.G., Experimental Investigation of Ore Fragmentation Quality before In-Situ Leaching, Izv. TPU. Inzh. Georesurs., 2021, vol. 332, no. 6, pp. 160–166.

    Google Scholar 

  22. Samikhov, Sh.R., Zinchenko, Z.A., and Bobokhonov, B.A., Semi-commercial Testing of Pile Leaching of Low-Grade Ore at Dzhilau, Zoloto i tekhnologii, 2013, no. 3, pp. 54–57.

  23. Pavlov, A.M. and Semenov, Yu.M., Vacuum Technology Application in Ore Scraping in Irokinda Mine in the Permafrost Zone, Mining Informational and Analytical Bulletin—GIAB, 2007, no. 11, pp. 24–29.

  24. Sanakulov, K.S., Rudnev, S.V. and Kantsel’, A.V., Feasibility of Uchkulach Lead–Zinc Ore Mining with X-Ray Radiometric Processing, Gorn. Vestn. Uzbekistan, 2011, no. 1, pp. 17–20.

  25. Lomonosov, G.G. and Turtygina, N.A., Influence of Coarse-Grained Copper–Nickel Ore Raw Materials Class and Its Changeability upon the Benefication Indication, Mining Informational and Analytical Bulletin—GIAB, 2015, no. 3, pp. 104–107.

  26. Zhaboev, M.N., Semochkin, G.A., Kagan, G.F., and Blinov, Yu.I., Mining Technology Based on Grading of Off-Standard and Lost Ore, Gornyi Zhurnal, 1990, no. 9, pp. 23–25.

  27. Samatova, L.A. and Shepeta, E.D., Mixed-Type Processing Technologies for Low-Grade and Off-Standards Tungsten Ore and Waste, Mining Informational and Analytical Bulletin—GIAB, 2013, no. S4, pp. 187–199.

  28. Shestakov, V.A., Khakulov, V.A., and Semochkin, G.A., USSR Author’s Certificate no. 1120104, Byull. Izobret., 1984, no. 39.

  29. Chevan, A.Yu., Blasted Rock Shoveling in Mining Structurally Complex Deposits, Marsheider. Vestn., 2020, no. 2, pp. 66–70.

  30. Mine Capacity Improvement Using ALLU-Based Economically Effective Method, Gorn. Prom., 2020, no. 1, pp. 68–69.

  31. Prokhorenko, G.A., Gold heap Leaching from Mining Waste, Mining Informational and Analytical Bulletin—GIAB, 2000, no. 3, pp. 86–88.

  32. Naimova, R.Sh., Prospects of Using Muruntau Open Pit Mine Overburden as a Standby Resource, Mining Informational and Analytical Bulletin—GIAB, 2011, no. 3, pp. 117–122.

  33. Valakhanovich, E.M., Mazurkevich,A.P., Demich, L.M., and Inozemtsev, S.B., RF patent no. 2088758, Byul. Izobret., 2002, no. 29.

  34. Latyshev, M.Z., Improvement of Marketable Ore Quality in Mining of Very Thin Lodes, Kolyma, 1982, no. 6, pp. 30–31.

  35. Sekisov, G.V. and Cheban, A.Yu., Low-Waste Mining Technology for Structurally Complex Deposits with Mixed-Type Process Flows of Ore Mining and Processing, Journal of Mining Science, 2021, vol. 2021, vol. 57, no. 6, pp. 978–985.

    Article  Google Scholar 

  36. Sekisov, A. and Rasskazova, A., Assessment of the Possibility of Hydrometallurgical Processing of Low-Grade Ores in the Oxidation Zone of the Malmyzh Cu–Au Porphyry Deposit, Minerals, 2021, vol. 11, vo. 1, pp. 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Yu. Rasskazov or A. Yu. Cheban.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 2, pp. 57-67. https://doi.org/10.15372/FTPRPI20230206.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasskazov, I.Y., Cheban, A.Y., Litvinova, N.M. et al. Improvement of Mining and Processing Flowsheets at Structurally Complex Ore Deposits. J Min Sci 59, 233–241 (2023). https://doi.org/10.1134/S1062739123020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123020060

Keywords

Navigation