Skip to main content
Log in

Stress Concentration in Wellbore Zones at Underground Gas Storages

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The author studies stress concentration in wellbore zones during operation of underground gas storages. Numerical modeling yields that at the early stage of high-pressure injection of gas in underground gas storages, near the roof of a productive stratum, in rocks and in the cement lining, destructive shearing stresses arise, comparable with the injection pressure, which can induce the loss of tightness in the annular space. For preventing the loss of gas, it is proposed to ream the wells in the roof of a productive stratum and to install a spring centralizer at a certain place in the casing string. The nominal diameter of the centralizer should exceed the wellbore diameter. This can stop propagation of cement destruction. For decreasing the destructive stress intensity, it is advisable to round off corner zones while reaming within the interval of a productive strata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. Vasil’ev, V.A., Grishin, D.V., Golod, G.S., Epishov, A.P., Gun’kina, T.A., and Mashkov, V.A., Teoriya i praktika ekspluatatsii podzemnykh khranilishch gaza v usloviyakh razrusheniya plasta-kollektora (Operation of Underground Gas Storages under Conditions of Failure of Reservoir Rocks: Theory and Practice), Moscow: TPS Print, 2016.

    Google Scholar 

  2. Pyatakhin, M.V., Geomekhanicheskie problem pri ekspluatatsii skvazhin (Geomechanical Problems in Well Operation), Moscow: Gazprom VNIIGAZ, 2011.

    Google Scholar 

  3. Grishin, D.V., Petukhov, A.V., and Petukhov, A.A., Factors of Failure in Wellbore Zones at Gatchina UGS and Sand Production Prediction, Zap. Gorn. Inst., 2010, vol. 188, pp. 207–213.

    Google Scholar 

  4. Zinov’ev, V.V., Basniev, K.S., Budzulyak, B.V., Ananenkov, A.G., and Aksyutin, O.E., Povyshenie nadezhnosti i bezopasnosti ekspluatatsii podzemnykh khranilishch gaza (Improved Safety and Reliability of Underground Gas Storages), Moscow: Nedra-Biznestsentr, 2005.

    Google Scholar 

  5. Svalov, A.M., Mechanism of Annular Space Unsealing during Hydraulic Fracturing, Journal of Mining Science, 2021, vol. 57, no. 1, pp. 18–23.

    Article  Google Scholar 

  6. Muskhelishvili, N.I., Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti (Some Basic Problems of Mathematical Elasticity), Moscow: Nauka, 1966.

    Google Scholar 

  7. Sedov, L.I., Mekhanika sploshnoi sredy (Continuum Mechanics), Moscow: Nauka, 1970.

    Google Scholar 

  8. Trofimov, V.A. and Filippov, Yu.A., Influence of Stress Variation in Roof Rocks of Coal Seam on Strata Gas Conditions in Longwalling, Journal of Mining Science, 2019, vol. 55, no. 5, pp. 722–732.

    Article  Google Scholar 

  9. Zheltov, V.P., Mekhanika neftegazonosnogo plasta (Mechanics of Oil and Gas Reservoir), Moscow: Nedra, 1975.

    Google Scholar 

  10. Barenblatt, G.I., Entov, V.M., and Ryzhik, V.M., Davlenie zhidkostei i gazov v prirodnykh plastakh (Pressure of Fluids and Gases in Natural Reservoirs), Moscow: Nedra, 1984.

    Google Scholar 

  11. Svalov, A.M., Mekhanika protsessov bureniya i neftegazodobychi (Mechanics of Drilling and Petroleum Recovery Processes), Moscow: Librokom, 2009.

    Google Scholar 

  12. Aziz, K. and Settari, A., Petroleum Reservoir Simulation, London: Appl. Sci. Publ. Ltd., 1979.

    Google Scholar 

  13. Nikolaevsky, V.N., Geomekhanika i flyuidodinamika s prilozheniyami k problemam gazovykh i neftyanykh plastov (Geomechanics and Fluid Dynamics with Oil and Gas Reservoir Applications), Moscow: Nedra, 1996.

    Google Scholar 

  14. Karev, V.I., Korolev, D.S., Kovalenko, Yu.F., and Ustinov, K.B., Geomechanical and Physical Modeling of Deformation in Underground Gas Storage Strata under Cyclic Change of Reservoir Pressure), Gaz. Prom., 2020, no. s4(808), pp. 56–62.

  15. Wang, H.F., Theory of Linear Poroelasticity, Princeton University Press, 2000.

    Google Scholar 

  16. Coussy, O., Mechanics and Physics of Porous Solids, John Wiley & Son Ltd., 2010.

    Book  Google Scholar 

  17. Panfilov, M.B., Fiziko-khimicheskaya gidrodinamika poristykh sred. S prilozheniyami k geonaukam i neftyanoi inzhenerii: ucheb. posob. (Physicochemical Hydrodynamics of Porous Media. Geosciences and Petroleum Engineering. Applications: Tutorial), Dolgoprudny: Intellekt, 2020.

    Google Scholar 

  18. Zobak, M.D., Geomekhanika neftyanykh zalezhei (Oil Reservoir Geomechanics), Izhevsk: Inst. komp. tekh., 2018.

    Google Scholar 

  19. Azarov, A.V., Kurlenya, M.B., Patutin, A.V., Serdyukov, S.V., Temiryaeva, O.A., Yablokov, A.V., A Method for Simulating Fluid Filtration in Solid Mineral Reservoirs Developed Using Hydraulic Fracturing, Journal of Mining Science, 2020, vol. 56, no. 6, pp. 879–886.

    Article  Google Scholar 

  20. Svalov, A.M., RF patent no. 2775849, Byull. Izobret., 2022, no. 20.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Svalov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 2, pp. 3-11. https://doi.org/10.15372/FTPRPI20230201.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Svalov, A.M. Stress Concentration in Wellbore Zones at Underground Gas Storages. J Min Sci 59, 183–190 (2023). https://doi.org/10.1134/S1062739123020011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123020011

Keywords

Navigation