Skip to main content
Log in

Overburden Recycling in Manufacture of Composite Materials for Road Construction at Mines

  • MINING ECOLOGY AND SUBSOIL MANAGEMENT
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors discuss feasibility of high-tonnage direct inclusion of overburden in composites for the construction of road layers at mines. It is found that overburden has a strength as per State Standard GOST 23558-94 and the prolonged dedusting effect. The optimal contents of the binder and fly ash are 8 and 10% by mass, respectively. Mechanical activation of fly ash for 1 min enlarges its specific surface by 2 times. The frost-resistant composites modified with mechanically activated fly ash and stabilizer (1% by mass) have the strength grades M20–M40.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. Khudyakova, L.I., Voiloshnikov, O.V., and Kislov, E.V., Ways to Improve the Rational Use of Natural Resources on the Example of the North-Baikal Ore Region, Zhurnal SFU. Seriya: Tekhnika i tekhnologii, 2011, vol. 4, no. 2, pp. 155–161.

    Google Scholar 

  2. Bragin, V.I., Makarov, V.A., Usmanova, N.F., Samorodskii, P.N., Lobastov, B.M., and Vashlaev, A.I., Mineralogical Examination of Gold Processing Plant Tailings, J. Min. Sci., 2019, vol. 55, no. 1, pp. 149–156.

    Article  Google Scholar 

  3. Komarov, M.A., Aliskerov, V.A., Kusevich, V.I., and Zavertkin, V.L., Mining Waste as an Additional Source of Mineral Raw Materials, Mineral’nye resursy Rossii. Ekonomoka i upravlenie, 2007, no. 4, pp. 3–9.

  4. Bugaeva, G.G. and Kogut, A.V., Environmental Risk Factors in Open Mining Areas, Mining Informational and Analytical Bulletin—GIAB, 2007, vol. 9, no. 12, pp. 292–296.

    Google Scholar 

  5. Matinde, E., Simate, G.S., and Ndlovu, S., Mining and Metallurgical Wastes: A Review of Recycling and Reuse Practices, J. S. Afr. Inst. Min. Metall., 2018, vol. 118, no. 8, pp. 825–844.

    Article  Google Scholar 

  6. Brooks, S.J., Escudero-Onate, C., and Lillicrap, A D., An Ecotoxicological Assessment of Mine Tailings from Three Norwegian Mines, Chemosphere, 2019, vol. 233, pp. 818–827.

    Article  Google Scholar 

  7. Vishnevskii, A.V., Use of Industrial Waste for Dedusting Mine Roads, Vestn. ZabGU, 2017, vol. 23, no. 11, pp. 12–18.

    Google Scholar 

  8. Sharov, N.A., Dudaev, R.R., Krishchuk, D.I., and Liskova, M.Yu., Methods of Dust Suppression in Coal Mines of the Far North, Vestn. PNIPU. Geologiya. Neftegazovoe i gornoe delo, 2019, vol. 19, no. 2, pp. 184–200.

    Google Scholar 

  9. Driscoll, K.E. and Maurer, J.K., Cytokine and Growth Factor Release by Alveolar Macrophages: Potential Biomarkers of Pulmonary Toxicity, Toxicol Pathol, 1991, vol. 19, no. 4, pp. 398–405.

    Article  Google Scholar 

  10. Golikov, R.A., Surzhikov, D.V., Kislitsyna, V.V., and Shtaiger, V.A., Impact of Environmental Pollution on Public Health (Literature Review), Nauchnoe obozrenie. Meditsinskie nauki, 2017, no. 5, pp. 20–31.

    Google Scholar 

  11. Rebinder, P.A., Poverkhnostnye yavleniya v dispersnykh sistemakh. Kolloidnaya khimiya (Surface Phenomena in Disperse Systems. Colloid Chemistry), Moscow: Nauka, 1978.

    Google Scholar 

  12. Fan, J., Wang, D., and Qian, D., Soil-Cement Mixture Properties and Design Considerations for Reinforced Excavation, J. Rock Mech. Geotech. Eng., 2018, vol. 10, pp. 791–797.

    Article  Google Scholar 

  13. Birulya, A.K., New Designs of Road Beds, Stroitel’stvo dorog, 1989, no. 6, pp. 45–48.

  14. Bezruk, V.M., Ukreplenie gruntov v dorozhnom i aerodromnom stroitel’stve (Soil Reinforcement in Road and Airfield Construction), Moscow: Transport, 1971.

    Google Scholar 

  15. Blesnina, N.A. and Fedorov, B.S., Glubinnoe zakreplenie grunta sinteticheskimi smolami (In-Depth Soil Consolidation with Synthetic Resins), Moscow: Stroyizdat, 1980.

    Google Scholar 

  16. Sokolovich, V.E., Khimicheskoe zakreplenie gruntov (Chemical Stabilization of Soil), Moscow: Stroyizdat, 1980.

    Google Scholar 

  17. Tokin, A.N., Fundamenty iz tsementogrunta (Soil Cement Foundations), Moscow: Stroyizdat, 1984.

    Google Scholar 

  18. Rzhanitsyn, B.A., Khimicheskoe zakreplenie gruntov v stroitel’stve (Chemical Stabilization of Soil in Construction), Moscow: Stroyizdat, 1986.

    Google Scholar 

  19. Correns, C.W., The Experimental Chemical Weathering of Silicates, Clay Minerals Bull., Mineralogisch-Petrographisches. Inst., 1961, no. 26, p. 4.

  20. Davidson, D.T., Pitre, G.L., Mateos, M., and George, K.P., Moisture Strength and Compaction Characteristics of Cement-Treated Soil Mixtures, HRB Bull., 1962, no. 353, pp. 42–63.

    Google Scholar 

  21. Dunn, C.S. and Salem, M.N., Temperature and Time Effects on the Shear Strength of Sand Stabilized with Cationic Bitumen Emulsion, Highway Res. Record, 1973, no. 442, pp. 113–124.

  22. Vlasova, V.V. and Vlasov, A.I., Features of Mechanical Activation of Ash and Slag Waste from Thermal Power Plants, GIAB, 2009, no. S15, pp. 351–355.

  23. Kalinkin, A.M., Gurevich, B.I., Kalinkina, E.V., and Zalkind, O.A., Hydration of Mechanically Activated Low-Calcium Ash from Thermal Power Plants, Khimiya v interesakh ustoychivogo razvitiya, 2018, vol. 26, no. 4, pp. 395–402.

    Google Scholar 

  24. Kalinkin, A.M., Gurevich, B.I., Kalinkina, E.V., Semushin, V.V., and Zalkind, O.A., Synthesis of Fly Ash-Based Geopolymers Using Mechanical Activation, Trudy Fersmanovskoi nauchnoi sessii GI KNTs RAN, 2020, no. 17, pp. 241–245.

  25. Endzhievskaya, I.G., Vasilovskaya, N.G., Dubrovskaya, O.G., Baranova, G.P., and Chudaeva, A.A., The Effect of Mechanical Activation on the Stabilization of Ash Properties of Krasnoyarsk CHP, J. Siberian Federal University, Eng. Technol., 2018, vol. 11, no. 7, pp. 842–855.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bespolitov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 1, pp. 188-197. https://doi.org/10.15372/FTPRPI20230118.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespolitov, D.V., Konovalova, N.A., Pankov, P.P. et al. Overburden Recycling in Manufacture of Composite Materials for Road Construction at Mines. J Min Sci 59, 167–175 (2023). https://doi.org/10.1134/S1062739123010180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123010180

Keywords

Navigation