Skip to main content
Log in

Influence of Magnetite Grain Size on Magnetic Susceptibility of Iron Ore Concentrates

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The influence of coarseness of magnetite is examined in iron concentrates after wet sieving analysis. The test concentrates are the products of Olkon, Karelskiy Okatysh and Stoilensky GOKs. It is shown that magnetic susceptibility of the concentrates gradually reduces with the decreasing size of magnetite particles in the material \(<50~\mu\)m and assumes the minimal values in the sieve residue \(<8~\mu\)m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. Kuskov, V.B. and Sishchuk, Yu.M., Improvement of Technologies for Beneficiation of Iron Ores of Different Type and Composition, Gornyi Zhurnal, 2016, no. 2, pp. 70–74.

  2. Lu, L., Iron Ore: Mineralogy, Processing and Environmental Sustainability, Cambridge, Woodhead Publishing, 2015.

    Google Scholar 

  3. Ivanova, K.K., Prokop’ev, S.A., Prokop’ev, E.S., and Turetskaya, N.Yu, High-Quality Iron Ore Concentrate Produced by Spiral Separation. Problems and Prospects for Efficient Mineral Processing in the 21st Century, Plaksin’s Lectures, 2019.

  4. Gzogyan, T.N., Theoretical and Experimental Studies into Production of High-Quality Concentrates, GIAB, 2010, no. 4, pp. 389–393.

  5. Prokop’ev, S.A., Pelevin AE., Napol’skikh SA., and Gel’bing RA., Stagewise Separation of Magnetite Concentrate Using the Spiral Method, Obogashch. Rud, 2018, no. 4, pp 28–33.

  6. Makinde, O.A., Ramatsetse, B.I., and Mpofu, K., Review of Vibrating Screen Development Trends: Linking the Past and the Future in Mining Machinery Industries, Int. J. Miner. Proc., 2015, vol. 145, pp. 17–22.

    Article  Google Scholar 

  7. Shcherbakov, A.V., Gur’ev, A.V., and Cherednichenko, M.V., Implementation of Innovative Technology to Increase the Metallurgical Value of Concentrates from Stoilensky GOK, Gornyi Zhurnal, 2021, no. 6, pp. 81–85.

  8. Opalev A.S., Khokhulya M.S., Fomin A.V., and Karpov I.V., Creation of Innovative Technologies for the Production of High-Quality Iron Ore Concentrate at Enterprises in the North-West of Russia, Gornyi Zhurnal, 2019, no. 6, pp 56–61.

  9. Opalev A.S., Improving the Quality of Magnetite Concentrates on the Basis of Magnetic Gravity Separation, Gornyi Zhurnal2020, no. 9, pp 72–77

  10. Gzogyan, S.R., Gzogyan, T.N., Lifanov D.V., and Cherednichenko, M.V., Implementation of Innovative Technology for Increasing the Metallurgical Value of Concentrates from Stoilensky GOK Gornyi Zhurnal 2021, no. 6, pp 76–81.

  11. Dauce P.D., de Castro G.B., Lima M.M.F., and Lima R.M.F. Characterization and Magnetic Concentration of an Iron Ore Tailings, J. Materials Res. Technol., 2019, vol. 8, no. 1, pp 1052–1059.

    Article  Google Scholar 

  12. Tang, C., Li, K., Ni, W., and Fan, D., Recovering Iron from Iron Ore Tailings and Preparing Concrete Composite Admixtures, Minerals, 2019, vol. 9, no. 4, p. 232.

    Article  Google Scholar 

  13. Bhadani, K., Asbjornsson G., Hulthen I., and Evertsson M. Application of Multi-Disciplinary Optimization Architectures in Mineral Processing Simulations, Miner. Eng., 2018, vol. 128, pp. 27–35.

    Article  Google Scholar 

  14. Gzogyan, S.R. and Shcherbakov, A.V., Improving the Quality of Concentrates from Stoilensky GOK by Magnetic Gravity Separation, Obogashch. Rud, 2020, no. 6, pp 3–8.

  15. Espin, M.J., Quintanilla, M.A.S., and Valverde, J.M., Magnetic Stabilization of Fluidized Beds: Effect of Magnetic Field Orientation, Chem. Eng. J., 2017, vol. 313, pp. 1335–1345.

    Article  Google Scholar 

  16. Zhu, Q., Li, H., Zhu, Q., and Huang, Q., Modeling of Segregation in Magnetized Fluidized Bed with Binary Mixture of Geldart-B Magnetizable and Nonmagnetizable Particles, Chinese J. Chem. Eng., 2018, vol. 26, no. 6, pp. 1412–1422.

    Article  Google Scholar 

  17. Pelevin, A.E., Sytykh, N.A., and Cherepanov, D.V., Particle Size Influence of Dry Magnetic Separation Efficiency, Mining Information and Analytical Bulletin—GIAB, 2021, no. 11-1, pp. 293–305.

  18. Khokhulya, M.S., Alekseeva, S.A., Cherezov, A.A., and Fomin, A.V., Analyses of Grinding and Gravity/Magnetic Separation with a View to Optimizing Mixed-Type Processing Technology for Rare Metals, Journal of Mining Science, 2021, vol. 57, no. 3, pp. 511–522.

    Article  Google Scholar 

  19. Gan, F.R., Peng, X.H., and Yang, B. Study on Process for Recovering Iron Concentrate from Iron-Containing Solid Waste in Mines, Journal of Mining Science, 2020, vol. 56, no. 4, pp. 669–677.

    Article  Google Scholar 

  20. Dyadin, V.I., Electrodynamic Separation of Fine Particles in the Pulsed Traveling Magnetic Field, Journal of Mining Science, 2020, vol. 56, no. 1, pp. 113–118.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Opalev.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 1, pp. 161-167. https://doi.org/10.15372/FTPRPI20230115.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opalev, A.S., Marchevskaya, V.V. Influence of Magnetite Grain Size on Magnetic Susceptibility of Iron Ore Concentrates. J Min Sci 59, 142–147 (2023). https://doi.org/10.1134/S1062739123010155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123010155

Keywords

Navigation