Skip to main content
Log in

Remote Impact Frequency Control of Air Hammers with Power Closure of Elastic Valve

  • SCIENCE OF MINING MACHINES
  • Published:
Journal of Mining Science Aims and scope

Abstract

It is important to enable remote control of duty cycle of air hammers via external distributors meant to set impact frequency. A new general layout is developed for the air-driven impact impulse generator with smooth adjustment of impact frequency at constant energy in driving construction elements in soil. The experimental model of the machine is designed and tested. Based on the analysis of the impulse indicator diagrams of the machine duty cycle, the impact frequency is correlated with the piston choke cross-section for three configurations of the control unit. The impact frequency control limits are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. Kühn, G., Scheuble, L., and Schlick, H., Rohrvortrieb für nichtbegehbare Leitungssysteme. Maschinen–Rohre–Arbeitsverfahren (Trenchless Laying of Blind Pipelines), Wiesbaden–Berlin: Bauverlag, 1987.

    Google Scholar 

  2. Rybakov, A.P., Osnovy bestransheinykh tekhnologii (teoriya i praktika) (Basic Trenchless Technologies: Theory and Practice), Moscow: Press-Byuro, 2005.

    Google Scholar 

  3. Smorodinov, M.I. (Ed.), Spravochnik po stroitel’nym rabotam (Construction Works: Handbook), Moscow: Stroyizdat, 1974.

    Google Scholar 

  4. Abramenkov, E.A. and Gruzin, V.V., Sredstva mekhanizatsii dlya podgotovki osnovanii i ustroistva fundamentov (Bed Conditioning and Foundation Mechanization Tools), Novosibirsk: NGASU, 1999.

    Google Scholar 

  5. Pokrovsky, G.I. and Fedorov, I.S., Deistvie udara i vzryva v deformiruemykh sredakh (Impact- and Blast-Induced Effects in Deformable Media), Moscow: Stroyizdat, 1967.

    Google Scholar 

  6. Kershenbaum, N.Ya. and Minaev, V.I., Prokladka gorizontal’nykh i vertikal’nykh skvazhin udarnym metodom (Horizontal and Vertical Percussive Drilling), Moscow: Nedra, 1984.

    Google Scholar 

  7. Koztylev, A.D., Grigorashchenko, V.A., Kozlov, V.A. et al., Pnevmoproboiniki v stroitel’nom proizvodstve (Air-Driven Punch Tools in Construction), Novosibirsk: Nauka, 1987.

    Google Scholar 

  8. Ratskevich, G.I., Kozlov, V.A., and Kostylev, A.D., Air-Powered Percussive Machines for Underground Construction, Mekhanizats. Stroit., 1978, no. 5, pp. 8–10.

  9. Bauman, V.A. and Bykhovsky, I.I., Vibratsionnye mashiny i protsessy v stroitel’stve (Vibration Machines and Processes in Construction), Moscow: Vyshaya Shkola, 1977.

    Google Scholar 

  10. Savinov, O.A. and Luskin, A.Ya., Vibratsionnyi metod pogruzheniya svai i ego primenenie v stroitel’stve (Vibration Method of Pile Driving and Applications in Construction), Leningrad: Gosstroyizdat, 1960.

    Google Scholar 

  11. Barkan, D.D., Vibrometod v stroitel’stve (Vibro-Method in Construction), Moscow: Gosstroyizdat, 1959.

    Google Scholar 

  12. Alimov, O.D., Manzhosov, V.K., Erem’yants, V.E. et al., Udar. Rasprostranenie voln deformatsii v udarnykh sistemakh (Impact. Deformation Wave Propagations in Percussive Systems), Moscow: Nauka, 1985.

    Google Scholar 

  13. Teplyakova, A.V., Azimov, A.M., Alieva, L., and Zhukov, I.A., Improvement of Manufacturability and Endurance of Percussion Drill Assemblies: Review and Analysis of Engineering Solutions, Mining Informational and Analytical Bulletin—GIAB, 2022, no. 9, pp. 120–132.

  14. Teplyakov, A.V., Zhukov, I.A., and Matyushev, N.V., Employment of Cam Percussion Machines in Various Geological Conditions, Ust. Razv. Gorn. Territor., 2022, vol. 14, no. 3 (53), pp. 501–515.

    Google Scholar 

  15. Timofeev, E.G., Teplyakov, A.V., Zhukov, I.A., and Golikov, N.S., Automated Method of Designing Anvil-Blocks of Impact Machines Based on the Physical and Mechanical Properties of Destroyed Object, Mining Informational and Analytical Bulletin—GIAB, 2022, no. 12-2, pp. 257–269.

  16. Yungmeister, D.A., Gasymov, E.E., and Isaev, A.I., Substantiation of the Design and Parameters of the Device for Regulating the Air Flow in Down-the-Hole Hammers of Roller-Cone Drilling Rigs, Mining Informational and Analytical Bulletin—GIAB, 2022, no. 6-2, pp. 251–267.

  17. Bolobov, V.I., Chupin, S.A., and Le-Thanh, B., Modeling Impact Fracture of Rock by Hydraulic Hammer Pick with Regard to Its Bluntness, Eurasian Min., 2022, vol. 37(1), pp. 72–75.

    Article  Google Scholar 

  18. Tishchenko, I.V., Chervov, V.V., and Gorelov, A.I., Effect of Additional Vibration Exciter and Coupled Vibro-Percussion Units on Penetration Rate of Pipe in Soil, Journal of Mining Science, 2013, vol. 49, no. 3, pp. 450–458.

    Article  Google Scholar 

  19. Tishchenko, I.V., Air Hammer with the Increased Blow Frequency, Vestn. KuzGTU, 2014, no. 3, pp. 12–16.

  20. Kurkov, K.S., Klimashko, V.V., Kostylev, A.D. et al., Pnevmoproboiniki (Pneumatic Hammers), Novosibirsk: IGD SO RAN, 1990.

    Google Scholar 

  21. Abramenkov, D.E., Abramenkov, E.A., An’shin, V.V. et al., Fiziko-matematicheskie modeli i raschet mekhanizmov mashin udarnogo deistviya (Physical and Mathematical Modeling and Design of Percussive Machine Mechanisms), Novosibirsk: NGASU, 2002.

    Google Scholar 

  22. Abramenkov, D.E., Abramenkov, E.A., An’shin, V.V. et al., Pnevmaticheskie mekhanizmy mashin udarnogo deistviya: drossel’nye, struinye, bezzolotnikovye, besklapannye: srav. posobie (Pneumatic Mechanisms in Percussive Machines: Throttle, Jet, Valveless—Comparison Guide), Novosibirsk: NGASU, 1993.

    Google Scholar 

  23. Smolyanitsky, B.N., Chervov, V.V., Trubitsyn, V.V. et al., New Air-Driven Percussive Machines for Special Construction, Mekhanizats. Stroit., 1997, no. 7, pp. 12–17.

    Google Scholar 

  24. Chervov, V.V., Impact Energy of Pneumatic Hammer with Elastic Valve in Back-Stroke Chamber, Journal of Mining Science, 2004, viol. 40, no. 1, pp. 74–83.

    Article  Google Scholar 

  25. Chervov, V.V., Smolyanitsky, B.N., and Tishchenko, I.V., Estimate of Blow Frequency Range for an Air-Drill Hammer with a Ring-Shaped Elastic Valve in the Backstroke Exhaust Line, Journal of Mining Science, 2016, vol. 52, no. 3, pp. 497–501.

    Article  Google Scholar 

  26. Tishchenko, I.V., Models of Impulse Generators with Variable Impact Capacity Structure, Stroitel’stvo, 2014, no. 3, pp. 79–87.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Tishchenko.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 1, pp. 103-111. https://doi.org/10.15372/FTPRPI20230110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tishchenko, I.V., Chervov, V.V. Remote Impact Frequency Control of Air Hammers with Power Closure of Elastic Valve. J Min Sci 59, 91–98 (2023). https://doi.org/10.1134/S1062739123010106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123010106

Keywords

Navigation