Skip to main content
Log in

Effect of Temperature on Physico-Mechanical Properties of Chunar Sandstone, Mirzapur, U.P., India

  • ROCK FRACTURE
  • Published:
Journal of Mining Science Aims and scope

Abstract

In this paper, the effect of elevated thermal treatment on the physico-mechanical parameters of Chunar sandstone from Mirzapur district of U.P. was investigated. The studied area is represented geologically by the Vindhyan Supergroup from Meso to Neproterozoic age. Sandstone of Chunar area, Mirzapur, U.P. has been granted the tag of Geographical Indication (GI) under the category of natural goods in 2019. Mechanical strength tests (indirect tensile and uniaxial compressive strength) were performed by a universal testing machine. Samples were treated at elevated temperature in the electric furnace at different temperatures for conducting mechanical and physical tests in each sample and results were recorded. The results suggest that for sandstone, high temperature treatment leads to volume expansion, weight reduction and a decrease in density as well as the reduction in the strength characteristics. Up to 200 °C there is an inappreciable increase in indirect tensile strength and compressive strength but after 200 °C strength gradually decreases. Beyond 400 °C, the P-wave velocities showed a sharp decline due to elevated temperature treatment induced cracks in the heated sandstone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. Fitzner, B., Heinrichs, K., and La Bouchardiere, D., Weathering Damage on Pharaonic Sandstone Monuments in Luxor-Egypt, Bull. Env., 2003, vol. 38, no. 9–10, pp. 1089–1103.

    Article  Google Scholar 

  2. Dorn, R.I., Boulder Weathering and Erosion Associated with a Wildfire, Sierra Ancha Mountains, Arizona, Geomorph., 2003, vol. 55, no. 1–4, pp. 155–171.

    Article  Google Scholar 

  3. Zhu, C. and Arson, C., A Thermo-Mechanical Damage Model for Rock Stiffness during Anisotropic Crack Opening and Closure, Acta Geotechnica, 2014, vol. 9, no. 5, pp. 847–867.

    Article  Google Scholar 

  4. Jaeger, J.C., Cook, N.G., and Zimmerman, R., Fundamentals of Rock Mechanics, John Wiley & Sons, 2009.

    Google Scholar 

  5. Tian, H., Kempka, T., Xu, N.X., and Ziegler, M., Physical Properties of Sandstones after High Temperature Treatment, J. Rock Mech. Rock Eng., 2012, vol. 45, no. 6, pp. 1113–1117.

    Article  Google Scholar 

  6. Dwivedi, R.D., Goel, R.K., Prasad, V.V.R., and Sinha, A., Thermo-Mechanical Properties of Indian and Other Granites, Int. J. Rock Mech. Min. Sci., 2008, vol. 45, no. 3, pp. 303–315.

    Article  Google Scholar 

  7. Dmitriyev, A.P., Physical Properties of Rocks at High Temperatures, National Aeronautics and Space Administration, 1972, vol. 684.

  8. Huang, Y.H., Yang, S.Q., Tian, W.L., Zhao, J., Ma, D., and Zhang, C.S., Physical and Mechanical Behavior of Granite Containing Pre-Existing Holes after High Temperature Treatment, Archives Civil Mech. Eng., 2017, vol. 17, no. 4, pp. 912–925.

    Article  Google Scholar 

  9. Yang, S.Q., Ranjith, P.G., Jing, H.W., Tian, W.L., and Ju, Y., An Experimental Investigation on Thermal Damage and Failure Mechanical Behavior of Granite after Exposure to Different High Temperature Treatments, Geothermics, 2017, vol. 65, pp. 180–197.

    Article  Google Scholar 

  10. Yin, T., Li, X., Cao, W., and Xia, K., Effects of Thermal Treatment on Tensile Strength of Laurentian Granite Using Brazilian Test, Rock Mech. Rock Eng., 2015, vol. 48, no. 6, pp. 2213–2223.

    Article  Google Scholar 

  11. Domanski, M. and Webb, J., A Review of Heat Treatment Research, Lithic Technol., 2007, pp. 153–194.

    Article  Google Scholar 

  12. Hajpal, M., Changes in Sandstones of Historical Monuments Exposed to Fire or High Temperature, Fire Technol., 2002, vol. 38, no. 4, pp. 373–382.

    Article  Google Scholar 

  13. Lion, M., Skoczylas, F., and Ledesert, B., Effects of Heating on the Hydraulic and Poroelastic Properties of Bourgogne Limestone, Int. J. Rock Mech. Min. Sci., 2005, vol. 42, no. 4, pp. 508–520.

    Article  Google Scholar 

  14. Griffiths, L., Heap, M.J., Baud, P., and Schmittbuhl, J., Quantification of Microcrack Characteristics and Implications for Stiffness and Strength of Granite, Int. J. Rock Mech. Min. Sci., 2017, vol. 100, pp. 138–150.

    Article  Google Scholar 

  15. Heuze, F.E., High-Temperature Mechanical, Physical and Thermal Properties of Granitic Rocks—A Review, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1983, vol. 20, no. 1, pp. 3–10.

    Article  Google Scholar 

  16. Xu, X., Gao, F., Shen, X., and Xie, H., Mechanical Characteristics and Microcosmic Mechanisms of Granite under Temperature Loads, J. Chin Univ. Min. Tech., 2008, vol. 18, pp. 413–417.

    Article  Google Scholar 

  17. Zhang, L., Mao, X., Liu, R., Guo, X., and Ma, D., The Mechanical Properties of Mudstone at High Temperatures: An Experimental Study, J. Rock Mech. Rock Eng., 2014, vol. 47, pp. 1479–1484.

    Article  Google Scholar 

  18. Cheng, Z. and Arson, C., A Thermo-Mechanical Damage Model for Rock Stiffness during Anisotropic Crack Opening and Closure, Acta Geotech., 2014, vol. 9, pp. 847–867.

  19. Singh, C.S. and Shrivastva, B.K., Study of P&S Wave Velocities in Chunar Sandstone, Int. J. Earth Sci. Eng., 2006, pp. 512–519.

  20. Soroush, H., Qutob, H., Oil, W., and Me, T., Evaluation of Rock Properties Using Ultrasonic Pulse Technique and Correlating Static to Dynamic Elastic Constants, Proc. of the 2nd South Asian Geoscience Conf. and Exhibition (GEOIndia 2011), New Delhi, India, 2011.

  21. Sarkar, K., Vishal, V., and Singh, T.N., An Empirical Correlation of Index Geomechanical Parameters with the Compressional Wave Velocity, Geotech. Geol. Eng., 2012, vol. 30, no. 2, pp. 469–479.

    Article  Google Scholar 

  22. Kassab, M.A. and Weller, A., Study on P-Wave and S-Wave Velocity in Dry and Wet Sandstones of Tushka Region, Egypt, Egyptian J. Petroleum, 2015, vol. 24, no. 1, pp. 1–11.

    Article  Google Scholar 

  23. Parent, T., Domede, N., Sellier, A., and Mouatt, L., Mechanical Characterization of Limestone from Sound Velocity Measurement, Int. J. Rock Mech. Min. Sci., 2015, vol. 79, pp. 149–156.

    Article  Google Scholar 

  24. Kurtulus, C., Cakir, S., and Yoğurtcuoğlu, A., Ultrasound Study of Limestone Rock Physical and Mechanical Properties, Soil Mechan. Foundation Eng., 2016, vol. 52, no. 6.

  25. Al-Dousari, M., Garrouch, A.A., and Al-Omair, O., Investigating the Dependence of Shear Wave Velocity on Petrophysical Parameters, J. Petroleum Sci. Eng., 2016, vol. 146, pp. 286–296.

    Article  Google Scholar 

  26. Bhattacharyya, A., Recent Advances in Vindhyan Geology, Geol. Soc. India Memoir, 1996, vol. 36, p. 331.

    Google Scholar 

  27. Bose, P.K., Sarkar, S., Chakrabarty, S., and Banerjee, S., Overview of Meso to Neoproterozoic Evolution of the Vindhyan Basin, Central India. J. Sediment. Geol., 2001, vol. 142, pp. 395–419.

    Article  Google Scholar 

  28. ISRM. Suggested Methods for Determining the Uniaxial Compressive Strength and Deformability of Rock Materials, Int. J. Rock Mech. Min. Sci, Geomech. Abstr., 1979, vol. 16, pp. 135–140.

  29. Yavuz, H., Demirdag, S., and Caran, S., Thermal Effect on the Physical Properties of Carbonate Rocks, Int. J. Rock Mech. Min. Sci., 2010, vol. 47, no. 1, pp. 94–103.

    Article  Google Scholar 

  30. Pappalardo, G., Punturo, R., Mineo, S., and Contrafatto, L., The Role of Porosity on the Engineering Geological Properties of 1669 Lavas from Mount Etna, Engineering Geology, 2017, vol. 221, pp. 16–28.

    Article  Google Scholar 

  31. Somerton, W.H., Thermal Properties and Temperature-Related Behavior of Rock/Fluid Systems, Elsevier, Amsterdam, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Singh.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 1, pp. 61-69. https://doi.org/10.15372/FTPRPI20230106.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Verma, A.K., Kumar, A. et al. Effect of Temperature on Physico-Mechanical Properties of Chunar Sandstone, Mirzapur, U.P., India. J Min Sci 59, 53–62 (2023). https://doi.org/10.1134/S1062739123010064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123010064

Keywords

Navigation