Skip to main content
Log in

Shear Localization and Structuring in Granular Medium Flow in Radial Channel

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The gravity flow of granular materials in axially symmetric convergent channels (V-shaped bunkers) is analyzed using the discrete element method. The symmetrical radial flow becomes unstable under certain conditions, and a space–time structure forms in the medium. The flow becomes essentially nonradial and asymmetric—the material is discretized into blocks, and the field of velocities inside the material becomes discontinuous. Further deformation reduces to relative movement of the blocks as rigid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

REFERENCES

  1. Janelid, I. and Kvapil, R., Sublevel Caving, Int. J. Rock Mech. Min. Sci., 1966, vol. 3, iss. 2, pp. 129–132.

    Article  Google Scholar 

  2. Wang, J., Yang, S., Li, Y., Wei, L., and Liu, H., Caving Mechanisms of Loose Top-Coal in Longwall Top-Coal Caving Mining Method, Int. J. Rock Mech. Min. Sci., 2014, vol. 71, pp. 160–170.

    Article  Google Scholar 

  3. Hustrulid, W. and Kvapil, R., Sublevel Caving—Past and Future, Proc. of the 5th Int. Conf. and Exhibition on Mass Mining, Luleå University of Technology Press, Luleå, Sweden, 2008, pp. 107–132.

  4. Kvapil, R., Gravity Flow of Granular Materials in Hoppers and Bins, Int. J. Rock Mech. Min. Sci., 1965, vol. 2, issue 1, pp. 25–41.

    Article  Google Scholar 

  5. Kvapil, R., Gravity Flow of Granular Materials in Hoppers and Bins in Mines—II. Coarse Material, Int. J. Rock Mech. Min. Sci., 1965, vol. 2, issue 3, pp. 277–292.

    Article  Google Scholar 

  6. Vakili, A. and Hebblewhite, B.K., A New Cavability Assessment Criterion for Longwall Top Coal Caving, Int. J. Rock Mech. Min. Sci., 2010, vol. 47, iss. 8, pp. 1317–1329.

    Article  Google Scholar 

  7. Wang, J., Zhang, J., Song, Z., and Li, Z., Three-Dimensional Experimental Study of Loose Top-Coal Drawing Law for Longwall Top-Coal Caving Mining Technology, J. Rock Mech. Geotech. Eng., 2015, vol. 7, issue 3, pp. 318–326.

    Article  Google Scholar 

  8. Xu, N., Zhan, J., Tian, H., Mei, G., and Ge, Q., Discrete Element Modeling of Strata and Surface Movement Induced by Mining under Open-Pit Final Slope, Int. J. Rock Mech. Min. Sci., 2016, vol. 88, pp. 61–76.

    Article  Google Scholar 

  9. Jia, Q., Tao, G., Liu, Y., and Wang, S., Laboratory Study on Three-Dimensional Characteristics of Gravity Flow during Longitudinal Sublevel Caving, Int. J. Rock Mech. Min. Sci., 2021, vol. 144, P. 104815.

    Article  Google Scholar 

  10. Jin, A., Sun, H., Wu, S., and Gao, Y., Confirmation of the Upside-Down Drop Shape Theory in Gravity Flow and Development of a New Empirical Equation to Calculate the Shape, Int. J. Rock Mech. Min. Sci., 2017, vol. 92, pp. 91–98.

    Article  Google Scholar 

  11. Tao, G.Q., Yang, S.J., and Ren, F.Y., Experimental Research on Granular Flow Characters of Caved Ore and Rock, Rock Soil Mech., 2009, vol. 30, issue 10, pp. 2950–2954.

    Google Scholar 

  12. Zhang, X., Tao, G., and Zhu, Z., A Gravity Flow Model of Fragmented Rocks in Longitudinal Sublevel Caving of Inclined Medium-Thick Ore Bodies, Archives Min. Sci., 2019, vol. 64, issue 3, pp. 533–546.

    Google Scholar 

  13. Bransby, P.L. and Blair-Fish, P.M., Deformations near Rupture Surfaces in Flowing Sand, Géotechnique, 1975, vol. 25, issue 2, pp. 384–389.

    Article  Google Scholar 

  14. Michalowski, R.L., Flow of Granular Material Through a Plane Hopper, Powder Technology, 1984, vol. 39, issue 1, pp. 29–40.

    Article  Google Scholar 

  15. Walters, J.K., A Theoretical Analysis of Stresses in Axially-Symmetric Hoppers and Bunkers, Chemical Eng. Sci., 1973, vol. 28, issue 3, pp. 779–789.

    Article  Google Scholar 

  16. Revuzhenko, A.F., Stazhevskii, S.B., and Shemyakin, E.I., Asymmetry of Plastic Flow in a Symmetrical Convergent Channel, Journal of Mining Science, 1977, vol. 13, no. 3, pp. 215–220.

    Article  Google Scholar 

  17. Revuzhenko, A.F., Stazhevskii, S.B., and Shemyakin, E.I., Asymmetry of Plastic Flow in Axially Symmetric Convergent Channels, Doklady Akad. Nauk, 1979, vol. 246, no. 3, pp. 572–574.

    Google Scholar 

  18. Bobryakov A. P., Klishin S. V., Kosykh V. P., and Revuzhenko A. F. Pulsation-Nature Stresses on Flat Convergent Walls of Slot-Type Hopper under Granular Medium Flow, Conf. Series: Earth and Environmental Science, 2018, vol. 134, issue 1, P. 012007.

  19. Bobryakov A. P., Klishin S. V., Kosykh V. P., Lavrikov S. V., Mikenina O. A., and Revuzhenko A. F. Deformation of Granular Material Flow in Converging Channels, Conf. Series: Earth and Environmental Science, 2018, vol. 206, issue 1 P. 012004.

  20. Lavrikov, S.V., Simulation of Geomaterial Flow in Convergent Channels with Consideration of Internal Friction and Dilatancy, Journal of Mining Science, 2010, vol. 46, no. 5, pp. 485–494.

    Article  Google Scholar 

  21. Bushmanova, O.P. and Bushmanov, S.B., Numerical Modeling of Localized Shear Deformation in a Convergent Channel, Journal of Mining Science, 2009, vol. 45, no. 4, pp. 334–338.

    Article  Google Scholar 

  22. Lavrikov, S.V. and Revuzhenko, A.F., Stochastic Models in Problems of the Local Deformation of Flowing Media in Radial Channels, Journal of Mining Science, 2000, vol. 36, no. 1, pp. 8–16.

    Article  Google Scholar 

  23. Jing, L. and Stephansson, O., Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications, Elsevier, 2007, vol. 85.

    Google Scholar 

  24. Labra, C.A., Oñate, E., and Rojek, J., Advances in the Development of the Discrete Element Method for Excavation Processes, Universitat Politècnica de Catalunya, 2012.

    Google Scholar 

  25. Wang, X., Li, B., Xia, R., and Ma, H., Application of DEM in Coal and Agricultural Machinery, Eng. Applications of Discrete Element Method, Springer, Singapore, 2021, pp. 21–34.

    Book  Google Scholar 

  26. Balevicius, R.R., Kacianauskas, R., Mróz, Z., and Sielamowicz, I., Discrete-Particle Investigation of Friction Effect in Filling and Unsteady/Steady Discharge in Three-Dimensional Wedge-Shaped Hopper, Powder Technology, 2008, vol. 187, issue 2, pp. 159–174.

    Article  Google Scholar 

  27. Abatzoglou, N., Gil, E.C., and Gosselin, R., Influence of Hopper Geometry on Radial and Axial Concentration Profiles of Segregated and Homogenized Granular Mixture Flows, Powder Technology, 2014, vol. 262, pp. 42–50.

    Article  Google Scholar 

  28. Xu, J., Hu, Z., Xu, Y., Wang, D., Wen, L., and Bai, C., Transient Local Segregation Grids of Binary Size Particles Discharged from a Wedge-Shaped Hopper, Powder Technology, 2017, vol. 308, pp. 273–289.

    Article  Google Scholar 

  29. Liu, S., Chen, H., Zhao, X., Liu, C., Wu, T., and Su, J., Numerical Investigation on Granular Flow from a Wedge?Shaped Feed Hopper Using the Discrete Element Method, Chemical Eng. Technol., 2018, vol. 41, issue 5, pp. 913–920.

    Article  Google Scholar 

  30. Mollon, G. and Zhao, J., Characterization of Fluctuations in Granular Hopper Flow, Granular Matter, 2013, vol. 15, issue 6, pp. 827–840.

    Article  Google Scholar 

  31. Mollon, G., Periodic Instationarities of Granular Flows in Conical Hoppers, Granular Matter, 2020, vol. 22, issue 3, pp. 1–18.

    Article  Google Scholar 

  32. Wang, S., Yan, Y., and Ji, S., Transition of Granular Flow Patterns in a Conical Hopper Based on Superquadric DEM Simulations, Granular Matter, 2020, vol. 22, issue 4, pp. 1–16.

    Article  Google Scholar 

  33. Magalhães, F.G.R., Atman, A.P.F., Moreira, J.G., and Herrmann, H.J., Analysis of the Velocity Field of Granular Hopper Flow, Granular Matter, 2016, vol. 18, issue 2, pp. 1–7.

    Article  Google Scholar 

  34. Zhang, S., Lin, P., Wang, C.L., Tian, Y., Wan, J.F., and Yang, L., Investigating the Influence of Wall Frictions on Hopper Flows, Granular Matter, 2014, vol. 16, issue 6, pp. 857–866.

    Article  Google Scholar 

  35. Liao, Z., Yang, Y., Sun, C., Wu, R., Duan, Z., Wang, Y., Li, X., and Xu, J., Image-Based Prediction of Granular Flow Behaviors in a Wedge-Shaped Hopper by Combing DEM and Deep Learning Methods, Powder Technology, 2021, vol. 383, pp. 159–166.

    Article  Google Scholar 

  36. Benvenuti, L., Kloss, C., and Pirker, S., Identification of DEM Simulation Parameters by Artificial Neural Networks and Bulk Experiments, Powder Technology, 2016, vol. 291, p. 456–465.

    Article  Google Scholar 

  37. Ma, C., Yang, J., Zenz, G., Staudacher, E.J., and Cheng, L., Calibration of the Microparameters of the Discrete Element Method Using a Relevance Vector Machine and Its Application to Rockfill Materials, Advances Eng. Software, 2020, vol. 147, P. 102833.

    Article  Google Scholar 

  38. Lu, G., Third, J.R., and Müller, C.R., Discrete Element Models for Non-Spherical Particle Systems: From Theoretical Developments to Applications, Chem. Eng. Sci., 2015, vol. 127, pp. 425–465.

    Article  Google Scholar 

  39. He, Y., Evans, T.J., Yu, A., and Yang, R., Discrete Modeling of Compaction of Non-Spherical Particles, EPJ Web of Conf., 2017, vol. 140, P. 01005.

  40. Soltanbeigi, B., Podlozhnyuk, A., Kloss, C., Pirker, S., Ooi, J.Y., and Papanicolopulos, S.A., Influence of Various DEM Shape Representation Methods on Packing and Shearing of Granular Assemblies, Granular Matter, 2021, vol. 23, iss. 2, pp. 1–16.

    Article  Google Scholar 

  41. Sanchidrián, J.A., Ouchterlony, F., Segarra, P., and Moser, P., Size Distribution Functions for Rock Fragments, Int. J. Rock Mech. Min. Sci., 2014, vol. 71, pp. 381–394.

    Article  Google Scholar 

  42. Fowler, A.C. and Scheu, B., A Theoretical Explanation of Grain Size Distributions in Explosive Rock Fragmentation, Proc. of the Royal Society A: Mathematics, Physical and Eng. Sci., 2016, vol. 472, iss. 2190, P. 20150843.

    Article  Google Scholar 

  43. Otsubo, M., O’Sullivan, C., and Shire, T., Empirical Assessment of the Critical Time Increment in Explicit Particulate Discrete Element Method Simulations, Comput. Geotech., 2017, vol. 86, pp. 67–79.

    Article  Google Scholar 

  44. Kruggel-Emden, H., Sturm, M., Wirtz, S., and Scherer, V., Selection of an Appropriate Time Integration Scheme for the Discrete Element Method (DEM), Comput. Chem. Eng., 2008, vol. 32, iss. 10, pp. 2263–2279.

    Article  Google Scholar 

  45. Jahanger, Z.K., Sujatha, J., and Antony, S.J., Local and Global Granular Mechanical Characteristics of Grain–Structure Interactions, Indian Geotech. J., 2018, vol. 48, iss. 4, pp. 753–767.

    Article  Google Scholar 

  46. Sarno, L., Tai, Y.C., Carravetta, A., Martino, R., Papa, M.N., and Kuo, C.Y., Challenges and Improvements in Applying a Particle Image Velocimetry (PIV) Approach to Granular Flows, J. Physics: Conf. Series, IOP Publishing, 2019, vol. 1249, iss. 1, pp. 012011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Klishin.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2023, No. 1, pp. 22-34. https://doi.org/10.15372/FTPRPI20230103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klishin, S.V., Revuzhenko, A.F. Shear Localization and Structuring in Granular Medium Flow in Radial Channel. J Min Sci 59, 17–28 (2023). https://doi.org/10.1134/S1062739123010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739123010039

Keywords

Navigation