Skip to main content
Log in

Recovery Dynamics of Mining-Altered Natural Ecosystems by Satellite Data

  • MINING ECOLOGY AND SUBSOIL MANAGEMENT
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors have developed a procedure for estimating recovery dynamics of natural ecosystems damaged by mineral mining using the satellite observation data. The procedure uses the vegetation index of phytocenosis and the temperature of underlying terrain. The case-study of apatite-bearing ore processing waste revealed the time series of the vegetation index and the underlying terrain temperature of the incipient phytocenosis as compared with the phytocenosis of the surrounding natural landscape. It is found that the recovery of the natural ecosystems by generation of a biologically active medium activate the test factors to reach the values of phytocenosis of the surrounding natural landscape. The justification is provided for usability of the retrospective earth remote sensing data on ground surface in the objective estimation of recovery dynamics of natural ecosystems damaged by mineral mining in the Arctic conditions without undertaking land exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. O sostoyanii i ob okhrane okruzhayushchei sredy Rossiiskoi Federatsii v 2020 godu. Gosudarstvennyi doklad (State of the Environment and Environmental Protection in the Russian Federation in 2020. State Report), Moscow: Minprirody Rossii, MGU im. Lomonosova, 2021.

  2. Naumov, I. V., Study of Spatial Disproportions in the Processes of Disturbance and Reclamation of Land Resources in Russia, Izv. UGGU, 2019, no 4, pp 142–151.

  3. Ivanov, A.N., Ignat’eva, M.N., Yurak V.V., and Pustokhina N.G., Problems of Restoration of Lands Damaged by Mineral Mining, Izv. UGGU 2020, no. 4, pp 218–227.

  4. Wulder, M.A., White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B., Fosnight E.A., Shaw J., Masek, J.G., and Roy, D.P. The Global Landsat Archive: Status, Consolidation, and Direction, Remote Sensing Env., 2016, vol. 185, pp. 271–283.

    Article  Google Scholar 

  5. Yengoh, G.T., Dent D., Olsson L., Tengberg, A.E., and Tucker III, C.J. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations, Springer, 2016.

    Book  Google Scholar 

  6. Kalabin, G.V., Assessment of Ecological Impact in Mining Areas by Biota Response, J. Min. Sci., 2018, vol. 54, no. 3, pp. 507–513.

    Article  Google Scholar 

  7. Mesyats S.P. and Ostapenko S.P., Prediction of the Environmental Impact of Mining Industry Based on Satellite Observations, J. Min. Sci., 2018, vol. 54, no. 4, pp. 690–696.

    Article  Google Scholar 

  8. Trinh Le Hung, Zen’kov I.V., Nguyen Thi Thu Nha, Yuronen, Yu.P., Studying the Change in Vegetation Cover in Open-Mining Area of the Sin Quyen Copper Deposit (Vietnam) by Satellite Observation Data, Gornyi Zhurnal, 2022, no. 2, pp. 88–92.

  9. Kovda V.A., Problemy zashchity pochvennogo pokrova i biosfery planety (Problems of Protection of Soil Cover and Planet Biosphere), Pushchino, 1989.

  10. Li Y., Zhao M., Motesharrei S., Mu Q., Kalnay E., and Li S. Local Cooling and Warming Effects of Forests Based on Satellite Observations, Nature Communications, 2015, no. 6, article ID 6603.

    Article  Google Scholar 

  11. Mildrexler, D.J., Zhao M., Heinsch, F.A., and Running, S.W. A New Satellite-Based Methodology for Continental Scale Disturbance Detection, Ecol. Appl., 2007, vol. 17, pp 235–250.

    Article  Google Scholar 

  12. Landsat 7 Data Users Handbook, EROS Sioux Falls, South Dakota, 2019.

  13. Grishchenko, M.Yu. and Mikhailyukova, P.G., Comparison of Ground and Satellite Data to Study the Spatial Differentiation of the Thermal Field of Designated Natural Area (Exemplified by Kunashir Island, Greater Kuril Ridge), Geodeziya i Kartografiya, 2022, no. 3, pp 35–43.

  14. Vlassova L., Fernando, P.C., Nieto, H., and Martı́n, P., Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling, Remote Sensing, 2014, no. 6, pp. 4345–4368.

    Article  Google Scholar 

  15. Mesyats, S.P., Novozhilova, M.Yu., Rumyantseva, N.S., and Volkova, E.Yu., Scientific Substantiation of the Restoration of Natural Ecosystems Damaged by Mineral Mining, Gornyi Zhurnal, 2019, no. 6, pp 77–83.

  16. Mesyats, S.P. and Ostapenko, S.P., Recovery Dynamics of Disturbed Lands in the Mining Industry in Accordance with the Principle of Self-Organization of Natural Systems and Prediction Using Satellite Data, Gornaya Promyshlennost’, 2021, no. 6, pp. 87–91.

  17. Javan, F.D., Samadzadegan, F., Mehravar, S., Toosi, A., Khatami, R., and Stein, A., A Review of Image Fusion Techniques for Pan-Sharpening of High-Resolution Satellite Imagery, ISPRS J. Photogrammetry Remote Sensing, 2021, vol. 171, pp. 101–117.

    Article  Google Scholar 

  18. Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS, Proc. Earth Resources Technology Satellite-1 Symposium NASA. Greenbelt SP-351, 1974.

  19. Nill L., Ullmann T., Kneisel C., Sobiech-Wolf J., and Baumhauer R. Assessing Spatiotemporal Variations of Landsat Land Surface Temperature and Multispectral Indices in the Arctic Mackenzie Delta Region between 1985 and 2018 Remote Sensing, 2019, vol. 11, article ID 2329.

    Article  Google Scholar 

  20. Jimenez-Munoz, J.C., Cristobal J., Sobrino, J.A., Barres, G.S., Ninyerola M., and Pons X. Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval from Landsat Thermal-Infrared Data, Geosci. Remote Sens., 2009, vol. 47, pp. 339–349.

    Article  Google Scholar 

  21. Van de Griend, A.A. and Owen M. On the Relationship between Thermal Emissivity and the Normalized Difference Vegetation Index for Natural Surface, Int. J. Remote Sensing, 1993, vol. 14, pp. 1119–1131.

    Article  Google Scholar 

  22. Hulley, G.C. and Hook, S.J. Generating Consistent Land Surface Temperature and Emissivity Products between ASTER and MODIS Data for Earth Science Research, IEEE Trans. Geoscience Remote Sensing, 2011, vol. 49, no. 4, pp. 1304–1315.

    Article  Google Scholar 

  23. QGIS Development Team. QGIS Geographic Information System, Software Version 3.18.1. Open Source Geospatial Foundation Project. Available at: http://qgis.osgeo.org.

  24. R. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2008.

  25. Nauchno-prikladnoy spravochnik po klimatu SSSR. Mnogoletnie dannye. Murmanskaya oblast’ (Scientific-Applied Reference Book on the Climate of the USSR Long-Term Data. The Murmansk Region), Leningrad: Gidrometizdat, 1988.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Ostapenko.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 5, pp. 155-166. https://doi.org/10.15372/FTPRPI20220515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostapenko, S.P., Mesyats, S.P. Recovery Dynamics of Mining-Altered Natural Ecosystems by Satellite Data. J Min Sci 58, 839–848 (2022). https://doi.org/10.1134/S1062739122050155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122050155

Keywords

Navigation