Skip to main content
Log in

Roasting Decomposition for Phosphate Separation from Zircon Tailing

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

In this study, the thermal decomposition of zircon magnetic tailing has been conducted to remove phosphate using a roasting process with Na2CO3 and water leaching. The research on zircon magnetic tailing processing, which contained monazite, xenotime, zircon, anatase, rutile and cerianite, aimed to test the effectiveness of roasting techniques for phosphate decomposition so that REE can be easily extracted. The optimal conditions to ensure phosphate recovery up to 93.27% were determined. In this condition, zircon and xenotime minerals are still confirmed in the roasting products using Na2CO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. Abdelkade, A.M., Daher, A., and El-Kashef, E., Novel Decomposition Method for Zircon, J. Alloy Compd., 2008, vol. 460, nos. 1–2, pp. 577–580.

    Article  Google Scholar 

  2. Murty, V.G., Upadhyay, R., and Asokan, S., Recovery of Zircon from Sattankulam Deposit in India—Problems and Prospects, Proc. 6th Int. Heavy Miner. Conf. ‘Back to Basics’, the South African Institute of Mining and Metallurgy, South Africa, 2007.

  3. Biswas, R.K., Habib, M.A., Karmakar, A.K., and Islam, M.R., A Novel Method for Processing of Bangladeshi Zircon. Part I: Baking and Fusion with NaOH, Hydrometallurgy, 2010, vol. 103, nos. 1–4, pp. 124–129.

    Article  Google Scholar 

  4. Srikanth, S., Devi, V.L., and Kumar, R., Unfolding the Complexities of Mechanical Activation Assisted Alkali Leaching of Zircon (ZrSiO4), Hydrometallurgy, 2016, vol. 165, pp. 125–136.

    Article  Google Scholar 

  5. Poernomo, H., Biyantoro, D., and Purwani, M., Study of the Technological Concept of Local Zircon Sand Processing Containing Monazite, Senotim and Ilmenite, Eksplorium, 2016, vol. 37, no. 2, pp. 73–88.

    Article  Google Scholar 

  6. Alfiyan, M., Zircon Supervision in Indonesia, Pros. Semin. Nas. Teknol. Pengelolaan Limbah XIV, 2013.

  7. Suseno, T., Analysis of Prospects for Indonesian zircon sand in the world market, J. Teknol. Miner. Batubara, 2015, vol. 11, no. 1, pp. 61–77.

    Google Scholar 

  8. Zhai, J., Wang, H., Chen, P., Hu, Y., and Sun, W., Recycling of Iron and Titanium Resources from Early Tailings, From Fundamental Work to Industrial Application, Chemosphere, 2020, vol. 242, 125178.

    Article  Google Scholar 

  9. Mäkinen, J., Salo, M., Khoshkhoo, M., Sundkvist, J.E., and Kinnunen, P., Bioleaching of Cobalt from Sulfide Mining Tailings, a Mini-Pilot Study, Hydrometallurgy, 2020, vol. 196, 105418.

    Article  Google Scholar 

  10. Kinnunen, P., Ismailov, A., Solismaa, S., Sreenivasan, H., Räisänen, M.L., Levänen, E. et al., Recycling Mine Tailings in Chemically Bonded Ceramics—A Review, J. Clean. Prod., 2018, vol. 174, pp. 634–649.

    Article  Google Scholar 

  11. Bian, Z., Miao, X., Lei, S., Chen, S.E., Wang, W., and Struthers, S., The Challenges of Reusing Mining and Mineral-Processing Wastes, Science, 2012, vol. 337, no. 6095, pp. 702–703.

    Article  Google Scholar 

  12. Wang, L., Ji, B., Hu, Y., Liu, R., and Sun, W., A Review on In-Situ Phytoremediation of Mine Tailings, Chemosphere, 2017, vol. 184, pp. 594–600.

    Article  Google Scholar 

  13. Suprapto, S.J., An Overview of the Rare Earth Elements, Bul. Sumber Daya. Geol., 2009, vol. 4, no. 1, pp. 36–47.

    Article  Google Scholar 

  14. Lindsay, M.B., Moncur, M.C., Bain, J.G., Jambor, J.L., Ptacek, C.J., and Blowes, D.W., Geochemical and Mineralogical Aspects of Sulfide Mine Tailings, Appl. Geochem., 2015, vol. 57, pp. 157–177.

    Article  Google Scholar 

  15. Bagheri, B., Mehrabani, J.V., and Farrokhpay, S., Recovery of Sphalerite from a High Zinc Grade Tailing, J. Hazard. Mater., 2020, vol. 381, 120946.

    Article  Google Scholar 

  16. Lyu, X., Yao, G., Wang, Z., Wang, Q., and Li, L., Hydration Kinetics and Properties of Cement Blended with Mechanically Activated Gold Mine Tailings, Thermochim. Acta., 2020, vol. 683, 178457.

    Article  Google Scholar 

  17. Abaka-Wood, G.B., Zanin, M., Addai-Mensah, J., and Skinner, W., Recovery of Rare Earth Elements Minerals from Iron Oxide–Silicate Rich Tailings. Part 2: Froth Flotation Separation, Miner. Eng., 2019, vol. 142, 105888.

    Article  Google Scholar 

  18. Abaka-Wood, G.B., Zanin, M., Addai-Mensah, J., and Skinner, W., Recovery of Rare Earth Elements Minerals from Iron Oxide−Silicate Rich Tailings. Part 1: Magnetic Separation, Miner. Eng., 2019, vol. 136, pp. 50–61.

    Article  Google Scholar 

  19. Munive, G.T., Encinas, M.A., Campoy, M.M., Álvarez, V.E., Vazquez, V.M., and Choque, D.C., Leaching Gold and Silver with an Alternative System, Glycine Thiosulfate Mineral, Tailings J., 2020, vol. 72, no. 2, pp. 918–924.

    Google Scholar 

  20. Wang, P., Sun, Z., Hu, Y., and Cheng, H., Leaching of Heavy Metals from Abandoned Mine Tailings Brought by Precipitation and the Associated Environmental Impact, Sci. Total Environ., 2019, vol. 695, 133893.

    Article  Google Scholar 

  21. Prameswara, G., Trisnawati, I., Poernomo, H., Mulyono, P., Prasetya, A., and Petrus, H.T.B.M., Kinetics of Yttrium Dissolution from Alkaline Fusion on Zircon Tailings, Mining, Metall. Explor., 2020, vol. 37, no. 4, pp. 1297–1305.

    Article  Google Scholar 

  22. Trisnawati, I., Prameswara, G., Mulyono, P., Prasetya, A., and Petrus, H.T.B.M., Sulfuric Acid Leaching of Heavy Rare Earth Elements (HREEs) from Indonesian Zircon Tailing, Int. J. Technol., 2020, vol. 11, no. 4, p. 804.

    Article  Google Scholar 

  23. Trisnawati, I., Zirconium Leaching from Magnetic Tailing of Zircon Sand Roasted using NaOH, Metalurgi, 2020, vol. 35, no. 3, p. 83.

    Article  Google Scholar 

  24. Yulandra, A., Trisnawati, I., Bendiyasa, I.M., Rachmipusparini, W., and Petrus, H.T.B.M., Optimization of Rare Earth Element Precipitation from Mixed Rare Earth Concentrate by "Response Surface Methodology", Met. Indones., 2020, vol. 42, no. 1, p. 28.

    Article  Google Scholar 

  25. Prameswara, G., Mulyono, P., Prasetya, A., Purnomo, H., and Trisnawati, I., Extraction of Rare Earth Metals (REEs) and Valuable Metals from Fusion of Alkaline Zircon Tailings, Seminar Nasional. Teknik. Kimia Kejuangan, 2019.

  26. Trisnawati, I., Winmoko, B.A., Poernomo, H., Bendiyasa, I.M., Murti, H.T., Petrus, B. et al., Taguchi Design for Optimization of Extraction Rare Earth Elemen from Zircon Sand Tailings Using Oxalate Acid Precipitation Method: Effect of pH and Temperature, Seminar Geologi. Nuklir. Sumber. Daya Tambang. Tahun., 2019.

  27. Purwanti, T., Setyadji, M., Astuti, W., Perdana, I., and Petrus, H.T.B.M., Phosphate Decomposition by Alkaline Roasting to Concentrate Rare Earth Elements from Monazite of Bangka Island, Indonesia, J. Min. Sci., 2020, vol. 56, no. 3, pp. 477–485.

    Article  Google Scholar 

  28. Panda, R. et al., Leaching of Rare Earth Metals (REMs) from Korean Monazite Concentrate, J. Ind. Eng. Chem., 2014, vol. 20, no. 4, pp. 2035–2042.

    Article  Google Scholar 

  29. Kumari, A., Panda, R., Jha, M.K., Lee, J.Y., Kumar, J.R., and Kumar, V., Thermal Treatment for the Separation of Phosphate and Recovery of Rare Earth Metals (REMs) from Korean Monazite, J. Ind. Eng. Chem., 2015, vol. 21, pp. 696–703.

    Article  Google Scholar 

  30. Shuchen, S., Zhiying, W., Xue, B., Bo, G., Wenyuan, W., and Ganfeng, T., Influence of NaCl–CaCl2 on Decomposing REPO4 with CaO, J. Rare Earth, 2007, vol. 25, no. 6, pp. 779–782.

    Article  Google Scholar 

  31. Peng-fei, X., Yan-xin, Z., Gan-feng, T.U., and Jing, G.U.O., High Temperature Dephosphorization Behavior of Monazite Concentrate with Charred Coal, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, no. 12, pp. 2392–2396.

    Article  Google Scholar 

  32. Trisnawati, I. et al., Optimization of Multistage Precipitation Processes for Rare Earth Element Purification from Indonesian Zircon Tailings, J. Sustain. Metall., 2021, vol. 7, no. 2, pp. 537–546.

    Article  Google Scholar 

  33. Prameswara, G., Trisnawati, I., Mulyono, P., Prasetya, A., and Petrus, H.T.B.M., Leaching Behavior and Kinetic of Light and Heavy Rare Earth Elements (REE) from Zircon Tailings in Indonesia, JOM, 2021, vol. 73, no. 4, pp. 988–998.

    Article  Google Scholar 

  34. Clavier, N., Mesbah, A., Szenknect, S., and Dacheux, N., Monazite, Rhabdophane, Xenotime and Churchite: Vibrational Spectroscopy of Gadolinium Phosphate Polymorphs, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2018, vol. 205, pp. 85–94.

    Article  Google Scholar 

  35. Ilieva, D. et al., FT–IR and Raman Spectra of Gd Phosphate Crystals and Glasses, J. Non. Cryst. Solids, 2001, vols. 293–295, no. 1, pp. 562–568.

    Article  Google Scholar 

  36. Ilieva, D., Kovacheva, D., Petkov, C., and Bogachev, G., Vibrational Spectra of R(PO3)3 Metaphosphates (R = Ga, In, Y, Sm, Gd, Dy), J. Raman Spectrosc., 2001, vol. 32, no. 11, pp. 893–899.

    Article  Google Scholar 

  37. El Hady, S.M., Bakry, A.R., Al Shami, A.A.S., and Fawzy, M.M., Processing of the Xenotime Concentrate of Southwestern Sinai via Alkali Fusion and Solvent Extraction, Hydrometallurgy, 2016, vol. 163, pp. 115–119.

    Article  Google Scholar 

  38. Galvin, J. and Safarzadeh, M.S., Decomposition of Monazite Concentrate in Potassium Hydroxide Solution, J. Environ. Chem. Eng., 2018, vol. 6, no. 1, pp. 1353–1363.

    Article  Google Scholar 

  39. Berry, L., Galvin, J., Agarwal, V., and Safarzadeh, M.S., Alkali Pug Bake Process for the Decomposition of Monazite Concentrates, Miner. Eng., 2017, vol. 109, pp. 32–41.

    Article  Google Scholar 

  40. Demol, J., Ho, E., and Senanayake, G., Sulfuric Acid Baking and Leaching of Rare Earth Elements, Thorium and Phosphate from a Monazite Concentrate: Effect of Bake Temperature from 200 to 800 °C, Hydrometallurgy, 2018, vol. 179, pp. 254–267.

    Article  Google Scholar 

  41. Hirai, H., Masui, T., Imanaka, N., and Adachi, G.Y., Characterization and Thermal Behavior of Amorphous Rare Earth Phosphates, J. Alloy Compd., 2004, vol. 374, no. 1–2, pp. 84–88.

    Article  Google Scholar 

  42. Zhang, L., Wang, X., Chen, H., and Jiang, F., Adsorption of Pb (II) Using Magnetic Titanate Nanotubes Prepared via Two-Step Hydrothermal Method, CLEAN–Soil, Air, Water, 2014, vol. 42, no. 7, pp. 947–955.

    Article  Google Scholar 

  43. Martı́nez-Klimov, M.E., Ramı́rez-Vidal, P., Tejeda, P.R., and Klimova, T.E., Synergy between Sodium Carbonate and Sodium Titanate Nanotubes in the Transesterification of Soybean Oil with Methanol, Catal. Today, 2019, vol. 353, pp. 119–125.

    Article  Google Scholar 

  44. Mutawali, M.A. and Sudaryadi, S., Ftir for Stoichiometric Reaction Control of Smelting Zircon with NaOH, GANENDRA Maj. IPTEK Nukl., 2020, vol. 23, no. 1, pp. 19–27.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Mulyono or H. T. M. B. Petrus.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 5, pp. 146-154. https://doi.org/10.15372/FTPRPI20220514.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trisnawati, I., Prameswara, G., Sari, E.P. et al. Roasting Decomposition for Phosphate Separation from Zircon Tailing. J Min Sci 58, 830–838 (2022). https://doi.org/10.1134/S1062739122050143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122050143

Keywords

Navigation