Skip to main content
Log in

Selecting Collecting Agents for Flotation

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The characteristics of mineral floatability, namely, the wetting angle and the induction time, are examined. The agreement between the predicted floatability using these characteristics and the theoretical and experimental data is accessed. It is found that hydrophobicity defined by the wetting angle is not always a quantitative characteristic of floatation. The floatability predicted using the time of induction and mechanism of physisorption of collecting agents agrees with the tests and actual practice. The successive change in floatability of sulfhydryl and oxyhydryl collectors in transition between different reagents disagrees with the estimate of the collector force determined from the binding energy between the functional group of a collector and the cation of mineral surface. The force estimated as the effect of a physisorbed collector on the water interlayer between bubble and particle adequately describes floatability of minerals. The mechanism of physisorption of a collector is universal relative to different reagents, is applicable to the description of particle–bubble interaction and enables selecting the structure and composition of radical on an effective collecting agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

REFERENCES

  1. Nguyen, A.V. and Schulze, H.J., Colloidal Science of Flotation, New York: Marcel Dekker, 2004.

    Google Scholar 

  2. Chau, T.T, Bruckard, W.J, Koh, P.T.L., and Nguyen, A.V., A Review of Factors That Affect Contact Angle and Implications for Flotation Practice, Adv. Colloid Interface Sci., 2009, vol. 150, no. 2, pp. 106–115.

    Article  Google Scholar 

  3. Zhang, Z., Zhuang, L., Wang, L., Gao, H., and Zhao, L., The Relationship among Contact Angle, Induction Time and Flotation Recovery of Coal, Int. J. Coal Prep. Utilization, 2018, pp. 1–9.

  4. Sun, L., Xing, Y., Yang, H., Cao, Y., and Gui, X., A New Experimental Approach to Evaluate Coal Particles Floatability: Bubble-Particle Attachment and Detachment Kinetics, Am. Chem. Soc. Omega, 2020, vol. 5, pp. 16733–16738.

    Article  Google Scholar 

  5. Kumar, G. and Prabhu, K.N., Review of Non-Reactive and Reactive Wetting of Liquids on Surfaces, Adv. Colloid Interface Sci., 2007, vol. 133, pp. 61–89.

    Article  Google Scholar 

  6. Babel, B. and Rudolph, M., Investigating Reagent-Mineral Interactions by Colloidal Probe Atomic Force Microscopy, Int. Miner. Proc. Congress, Moscow, 2018.

  7. Kondrat’ev, S.A. and Moshkin, N.P., Foam Separation Selectivity Conditioned by the Chemically Attached Agent, J. Min. Sci., 2014, vol. 50, no. 4, pp. 780–787.

    Article  Google Scholar 

  8. Li, S., Nguyen, A.V., and Sun, Z., Stochastic Induction Time of Attachment due to the Formation of Transient Holes in the Intervening Water Films between Air Bubbles and Solid Surfaces, J. Colloid Interface Sci., 2020, vol. 565, pp. 345–350.

    Article  Google Scholar 

  9. Albijanic, B., Ozdemir, O., Nguyen, A.V., and Bradshaw, D., A Review of Induction and Attachment Times of Wetting Thin Films between Air Bubbles and Particles and its Relevance in Flotation Separation of Particles, Adv. Colloid Interface Sci., 2010, vol. 159, no. 1, pp. 1–21.

    Article  Google Scholar 

  10. Albijanic, B., Hampton, M., Nguyen, P., Ozdemir, O., Bradshaw, D., and Nguyen, A., An Integrated Study of Bubble-Particle Attachment Mechanisms, XXV Int. Miner. Proc. Congress, 2010.

  11. Subasinghe, N. and Albijanic, B., Influence of the Propagation of Three-Phase Contact Line on Flotation Recovery, Miner. Eng, 2014, vol. 57, pp. 43–49.

    Article  Google Scholar 

  12. Albijanic, B., Amini, E., Wightman, E., Ozdemir, O., Nguyen, A.V., and Bradshaw, D.J., A Relationship between the Bubble-Particle Attachment Time and the Mineralogy of a Copper-Sulphide Ore, Miner. Eng., 2011, vol. 24, pp. 1335–1339.

    Article  Google Scholar 

  13. Albijanic, B., Bradshaw, D.J., and Nguyen, A.V., The Relationships between the Bubble-Particle Attachment Time, Collector Dosage and the Mineralogy of a Copper Sulphide Ore, Miner. Eng., 2012, vol. 36–38, pp. 309–313.

    Article  Google Scholar 

  14. Fuerstenau, D.W., A Century of Developments in the Chemistry of Flotation Processing, In Froth Flotation: A Century of Innovation, Denver, USA: SME, 2007.

    Google Scholar 

  15. Nowak, P., Xanthate Adsorption at PbS Surfaces: Molecular Model and Thermodynamic Description, Colloids Surf. A: Physicochem. Eng. Aspects, 1993, vol. 76, pp. 65–72.

    Article  Google Scholar 

  16. Frumkin, A.N., Physical and Chemical Foundations of Flotation Theory, Uspekhi Khimii, vol. 2, no. 1, pp. 1–15.

  17. Wang, W., Zhou, Z., Nandakumar, K., Masliyah, J.H., and Xu, Z., An Induction Time Model for the Attachment of an Air Bubble to a Hydrophobic Sphere in Aqueous Solutions, Int. J. Miner. Proc., 2005, vol. 75, pp. 69–82.

    Article  Google Scholar 

  18. Kondrat’ev, S.A., Collectability and Selectivity of Flotation Agent, J. Min. Sci., 2021, vol. 57, no. 3, pp. 480–492.

    Article  Google Scholar 

  19. Nguyen, A.V., Alexandrova, L., Grigorov, L., and Jameson, G.J., Dewetting Kinetics on Silica Substrates: Three Phase Contact Expansion Measurements for Aqueous Dodecylammonium Chloride Films, Miner. Eng., 2006, vol. 19, pp. 651–658.

    Article  Google Scholar 

  20. Lotter, N.O. and Bradshaw, D.J. The Formulation and Use of Mixed Collectors in Sulphide Flotation, Miner. Eng., 2010, vol. 23, pp. 945–951.

    Article  Google Scholar 

  21. Abramov, A.A., Flotatsiya. Reagenty sobirateli. T. 7 (Flotation. Collecting Agents. Vol. 7), Moscow: Gornaya kniga, 2012.

    Google Scholar 

  22. Nagaraj, D.R. and Ravishankar, S.A., Flotation Reagents: A Critical Overview from an Industry Perspective, In Froth Flotation: A Century of Innovation, Soc. Min., Metall. Explor., Colorado, Chapter 10, 2007, pp. 375–424.

  23. Kloppers, L., Maree, W., Oyekola, O., and Hangone, G., Froth Flotation of Merensky Reef Platimum Bearing Ore Using Mixtures of SIBX with a Dithiophosphate and a Dithiocarbamate, Miner. Eng., 2015, vol. 20, pp. 1047–1053.

    Google Scholar 

  24. Karimian, A., Rezaei B., and Masoumi A. The Effect of Mixed Collectors in the Rougher Flotation of Subgun Copper, Life Sci. J., 2013, vol. 10, pp. 268–272.

    Google Scholar 

  25. Hangone, G., Bradshaw, D., and Ekmekci, Z., Flotation of a Copper Sulphide Ore from Okiep Using Thiol Collectors and their Mixtures, J. South Afr. Inst. Min. Metall., 2005, vol. 105, pp. 199–206.

    Google Scholar 

  26. McFadzean, B., Castelyn, D.G., and O’Connor, C.T., The Effect of Mixed Thiol Collectors on the Flotation of Galena, Miner. Eng., 2012, vol. 36–38, pp. 211–218.

    Article  Google Scholar 

  27. Kondrat’ev, S.A., Burdakova, E.A., and Konovalov, I.A., Collectability of Physically Adsorbed Xanthate Ion–Dixanthogen Associates, J. Min. Sci., 2016, vol. 52, no. 3, pp. 541–550.

    Article  Google Scholar 

  28. Konovalov, I.A., Flotation of Lead-Zinc Ore Using a Mixture of Dithiocarbamate and Xanthate, Interexpo GEO-Sibir, Int. Sci. Conf. on Subsoil Use, Mining, Trends and Technologies of Prospecting, Exploration and Development of Mineral Deposits. Geoecology. Vol. 2, Novosibirsk: SGUGiT, 2021.

  29. Kondrat’ev, S.A., Activity and Selectivity of Carboxylic Acids as Flotation Agents, J. Min. Sci., 2012, vol. 48, no. 6, pp. 1039–1046.

    Article  Google Scholar 

  30. Ryaboi, V.I., Yanis, N.A., Petrova, L.N., Ustinov, I.D., and Artamonova, L.A., Nauchnye osnovy vybora flotatsionnykh reagentov, mekhanizm ikh vzaimodeistviya s mineralami. Intensifikatsiya protsessov obogashcheniya mineral’nogo syr’ya (Scientific Basis for the Selection of Flotation Agents, Mechanism of their Interaction with Minerals. Intensification of Mineral Dressing), Moscow: Nauka, 1981.

    Google Scholar 

  31. Kadagala, M.R., Nikkam, S., and Tripathy, S.K., A Review on Flotation of Coal Using Mixed Reagent Systems, Miner. Eng., 2021, vol. 173, pp. 107217.

    Article  Google Scholar 

  32. Jena, M.S., Biswal, S.K., and Rudramuniyappa, M.V., Study on Flotation Characteristics of Oxidized Indian High ash Sub-Bituminous Coal, Int. J. Miner. Process., vol. 87, no. 1–2, pp. 42–50.

    Article  Google Scholar 

  33. Hughes, T. Ch., RF patent no. 2304025 RU, Byull. Izobret., 2007, no. 22.

  34. Lavrinenko, A.A. and Svechnikova, N.Yu., Study of Quantum-Chemical Parameters of Hydrocarbons when Selecting Reagents for Coal Flotation, Vestn. MGTU im. G.I. Nosova, 2008, no. 1, pp. 85–87.

  35. Horr, T.J., Ralston, J., and Smart, R.St.C., The Use of Contact Angle Measurements to Quantify the Adsorption Density and Thickness of Organic Molecules on Hydrophilic Surfaces, Colloids Surf. A: Physicochemical and Eng. Aspects, 1995, vol. 97, pp. 183–196.

    Article  Google Scholar 

  36. Whitesides, G.M. and Laibinis, P.E., Wet Chemical Approaches to the Characterization of Organic Surfaces: Self-Assembled Monolayers, Wetting, and the Physical-Organic Chemistry of the Solid–Liquid Interface, Langmuir, 1990, vol. 6, pp. 87–96.

    Article  Google Scholar 

  37. Laskowski, J. and Kitchener, J.A., The Hydrophilic-Hydrophobic Transition on Silica, J. Colloid Interface Sci., 1969, vol. 29, no. 4, pp. 670–679.

    Article  Google Scholar 

  38. Chanturia, V.A., Nedosekina, T.V., and Fedorov, A.A., Separation of Pyrite-Arsenopyrite Products by Flotation Using Low-Molecular-Weight Organic Reagents, J. Min. Sci., 1998, vol. 34, no. 5, pp. 453–458.

    Article  Google Scholar 

  39. Kondrat’ev, S.A., Method for Selecting Structure and Composition of Hydrocarbon Fragment in Molecule of a Collecting Agent, J. Min. Sci., 2019, vol. 55, no. 3, pp. 420–429.

    Article  Google Scholar 

  40. Rosen, M.J., Surfactants and Interfacial Phenomena, John Wiley & Sons, Inc., Hoboken, 2004.

    Book  Google Scholar 

  41. Sis, H. and Chander, S., Improving Froth Characteristics and Flotation Recovery of Phosphate Ores with Nonionic Surfactants, Min. Eng., 2003, vol. 16, pp. 587–595.

    Article  Google Scholar 

  42. Kurkov, A.V. and Pastukhova, I.V., Flotation as the Subject-Matter of Supramolecular Chemistry, J. Min. Sci., 2010, vol. 46, no. 4, pp. 438–445.

    Article  Google Scholar 

  43. Lavrinenko, A.A., Shrader, E.A., Kharchikov, A.N., and Kunilova, I.V., Apatite Flotation from Brazilite–Apatite–Magnetite Ore, J. Min. Sci., 2013, vol. 49, no. 5, pp. 811–818.

    Article  Google Scholar 

  44. Aleinikov, N.A., Nikishin, G.I., Ogibin, Yu.P., and Petrov, A.D., Surface Properties of Branched Aliphatic Acids, Neftekhimiya, 1961, vol. 1, no. 3, pp. 418–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kondrat’ev.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 5, pp. 109-124. https://doi.org/10.15372/FTPRPI20220511.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.A. Selecting Collecting Agents for Flotation. J Min Sci 58, 796–811 (2022). https://doi.org/10.1134/S1062739122050118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122050118

Keywords

Navigation