Skip to main content
Log in

Physical Modeling of Tailings Dams in China: A Review

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

To enhance the scientific nature and the reliability of physical modeling of tailings dams, the present developments and main achievements are discussed from four perspectives: dam break, downstream evolution, stability evaluation and protection tests. The experiment materials, methods of measurement and instruments used are summarized. The problems and shortcomings of physical model tests are investigated in terms of the difference between a physical model and a prototype, nature of the experiment, methods of measurement, etc. Emerging technologies such as artificial intelligence and 3D printing to improve safety of tailings dams are discussed. The scope of the review embraces environmental impact of tailings dams in case of accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Azam, S. and Li, Q., Tailings Dam Failure: A Review Last One Hundred Years, Waster GEO Technics, 2010, vol. 12, pp. 50–53.

    Google Scholar 

  2. Wu, Z.Z. and Mei, G.D., Statistical Analysis of Tailings Pond Accidents and Cause Analysis of Dam Failure, China Safety Sci. J., 2014, vol. 24, no. 9, pp. 70–76.

    Google Scholar 

  3. Chai, J., Yuan, Q., Wang, Z.L., et al., Application Analysis of Physical Model Test Method, J. Xi’an University Sci. Technol., 2013, vol. 34, no. 5, pp. 505–511.

    Google Scholar 

  4. Wang, X.K. and Fang, D., Study on Laws of Debris Flow Model Similarity, J. Sichuan University: Eng. Sci. Edition, 2000, vol. 32, no. 3, pp. 9–12.

    Google Scholar 

  5. Coleman, S.E., Andrews, D.P., and Webby, M.G., Overtopping Breaching of Non-Cohesive Homogeneous Embankments, J. Hydraulic Eng., 2004, vol. 128, no. 9, pp. 829–838.

    Article  Google Scholar 

  6. Dupont, E., Dewals, B., Archambeau, P., Erpicum, S., and Pirotton, M., Experimental and Numerical Study of the Breaching of an Embankment Dam, J. Bacteriology, 2007, vol. 189, no. 9, pp. 3645–3649.

    Google Scholar 

  7. Hanson, G.J., Temple, D.M., and Robinson, K.M., Overview of Dam Gully Erosion Research, Int. J. Sediment Res., 2005, vol. 20, no. 3, pp. 259–269.

    Google Scholar 

  8. Morris, M.W., Hassan, M., Kortenhaus, A., Geisenhainer, G., Visser, P., and Zhu, Y., Modeling Breach Initiation and Growth, Hr Wallingford, 2008.

    Google Scholar 

  9. Morris, M.W., CADAM: Concerted Action on Dam Break Modelling, Hr Wallingford Limited, 2000.

    Google Scholar 

  10. Morris, M.W., Hassan, M.A., and Vaskinn, K.A., Conclusions and Recommendations from the IMPACT Project WP2: Breach Formation, Munich, HR Wallingford Ltd., 2004.

    Google Scholar 

  11. Kuang, S.F., Formation Mechanisms and Prediction Models of Debris Flow due to Natural Failures, J. Sediment Res., 1993, vol. 8, no. 4, pp. 42–57.

    Google Scholar 

  12. Zhao, T.L., Chen, S.S., and Zhong, Q.M., Advances in Studies of Tailing Dam Break Mechanism and Process, Hydro-Sci. Eng., 2015, vol. 36, no. 1, pp. 105–111.

    Google Scholar 

  13. Pan, J.P., Wang, S.Y., and Zhu, H.W., Study on Flow Slide Destruction Models Induced by Seismic Liquefaction and Stabilizing Measures of Tailings Dam, Metal Mine, 2011, vol. 46, no. 4, pp. 134–136

    Google Scholar 

  14. Zheng, X., Kang, Y., et al., Experimental Study on Tailings Dam Piping, Industrial Saf. Env. Protect., 2014, vol. 40, no. 1, pp. 71–77.

    Google Scholar 

  15. Wei, Y., Zhao, A.W., and Xu, K.L., Failure Experiment of Tailings Dam Foundation Piping, Metal Mine, 2015, vol. 50, no. 9, pp. 157–160.

    Google Scholar 

  16. Xiao, J.G., Yao, M.L., Huai, Y.G., et al., Expansion Mechanism of Collapse Gates of Upstream Tailings Dam Break due to Overtopping, Value Eng., 2017, vol. 36, no. 19, pp. 117–119.

  17. Jing, X.F., Yin, G.Z., Wei, Z.A., et al., Model Experimental Study of Collapse Mechanism and Broken Mode of Tailings Dam, Chinese J. Rock Soil Mech., 2011, vol. 32, no. 5, pp. 1377–1404.

    Google Scholar 

  18. Zhang, X.K., Sun, E.J., and Li, Z.X., Experimental Study on Evolution Law of Tailings Dam Flood Overtopping, China Safety Sci. J., 2011, vol. 21, no. 7, pp. 118–124.

    Google Scholar 

  19. Chu, J.W., Song, H.B., and Zhang, H.W., Experimental Study on Tailing Dam Break due to Overtopping, China Mine Eng., 2015, vol. 44, no. 3, pp. 73–77.

  20. Jin, J.X., Cui, H.Z., Liang, B., et al., Process Model Test on Tailings Dam Break in Earthquake Action and Reinforcement Scheme, China Safety Sci. J., 2017, vol. 27, no. 2, pp. 92–97.

    Google Scholar 

  21. Sun, E.J., Zhang, X.K., and Cheng, S., Centrifuge and Shaking Table Experiment on the Tailings Dam Failure, China Safety Sci. J., 2012, vol. 22, no. 6, pp. 130–135.

    Google Scholar 

  22. Wang, Y.Q. and Zhang, J.C., Tailings Dam-Break Debris Flow Prediction Analysis Based on Similar Tests, China Safety Sci. J., 2012, vol. 22, no. 2, pp. 70–75.

    Article  Google Scholar 

  23. Shao, J., Gan, S.S., and He, X.C., Application of Dam Break Simulation Test in Environmental Risk Assessment of Tailing Pond, China Mine Eng., 2016, vol. 45, no. 2, pp. 64–67.

    Google Scholar 

  24. Jing, X.Z., Yin, G.Z., Wei, Z.A., and Wang, M.L., Study of Tailings Dam-Break Surges with Floating Slurry in Model Experiment in Different Collapse Gates, J. Rock Soil Mech., 2012, vol. 33, no. 3, pp. 745–752.

    Google Scholar 

  25. Yin, G.Z., Jing, X.F., Wei, Z.A., et al., Experimental Study of Similar Simulation of Tailings Dam-Break, Chinese J. Rock Mech. Eng., 2010, vol. 29 (S2), no. 9, pp. 3830–3838.

    Google Scholar 

  26. Liu, L., Zhang, H.W., Zhong, D.Y., et al., Research on Tailings Dam Break due to Overtopping, J. Hydraulic Eng., 2014, vol. 32, no. 6, pp. 675–681.

    Google Scholar 

  27. Yin, G.Z., Jing, X.F., Wei, W., and Li, X.S., Study of Model Test of Seepage Characteristics and Field Measurement of Coarse and Fine Tailings Dam, J. Rock Mech. Geotech. Eng., 2010, vol. 29 (S2), no. 9, pp. 3710–3718.

    Google Scholar 

  28. Zhang, D.M., Zheng, B.B., Yin, G.Z., Dai, J., and Tang, F., Model Tests on Upstream Dam-Building Method Using Concentrated and Classified Tailings, J. Rock Soil Mech., 2016, vol. 37, no. 7, pp. 1832–1838.

    Google Scholar 

  29. Yin, G.Z., Li, Y., Wei, Z.A., Jing, X.F., and Zhang, Q.G., Regularity of the Saturation Lines Change and Stability Analysis of Tailings Dam in the Condition of Flood, J. Chongqing University, 2010, vol. 33, no. 3, pp. 72–86.

    Google Scholar 

  30. Jing, X.F., Yin, G.Z., Wei, Z.A., and Huang, G., Model Test and Numerical Simulation of Tailing Dam Safety Forecasting, J. Chongqing University, 2009, vol. 8, no. 3, pp. 308–313.

    Google Scholar 

  31. Deng, T., Wan, L., and Wei, Z.A., Stacking Model Test of Wenzhuang Tailings Reservoir and its Stability Analysis, J. Rock Soil Mech., 2011, vol. 32, no. 12, pp. 3647–3652.

    Google Scholar 

  32. Zhang, M.Z., Jin, A.B., Wang, Z.K., et al., On the Physical Model Tests of Tailings Dam Stability, Metals Mine, 2013, vol. 48, no. 12, pp. 115–117.

    Google Scholar 

  33. Zhang, W.Z., Kang, Q.R., Cao, G.S., et al., Stability Analysis of Different Construction Rates of a Copper Tailings Dam in Yunnan Province, Metal Mine, 2013, vol. 48, no. 12, pp. 10–17.

    Google Scholar 

  34. Wei, Z.A., Xu, J.J., Chen, Y.L., and Zhang, D.D., Reinforcement Method of both Ends Scroll Geosynthetics in Tailings Dam, J. Northeastern University: Natural Sci., 2014, vol. 35, no. 6, pp. 880–884.

    Google Scholar 

  35. Zhao, Y.S., Jing, X.F., Zhou, X., Cai, Z.Y., and Liu, K.H., Experimental Study on Blocking Action of Bar Strip on Tailings Dam Overtopping, China Safety Sci. J., 2016, vol. 26, no. 1, pp. 94–99.

    Google Scholar 

  36. Yin, G.Z., Wei, Z.A., Wan, L., and Zhang, D.M., Test Study on Stability of Fine Grained Tailings Dam in Geo-Grid Reinforcement Situation, Chinese J. Rock Mech. Eng., 2005, vol. 24, no. 6, pp. 1030–1034.

    Google Scholar 

  37. Jing, X.F., Zhou, X., Zhao, Y.S., et al., Impact Study on Spacing of Geogrid of Tailing Dam Break due to Overtopping, China Safety Sci. J., 2016, vol. 26, no. 8, pp. 68–74.

    Google Scholar 

  38. Tang, J.X., Yin, G.Z., Wei, Z.A., et al., Model Test Study of Fine Grained Tailings Dam of Longdu Tailings Pond, China Min. Magazine, 2004, vol. 13, no. 1, pp. 54–56.

    Google Scholar 

  39. Sui, S.M., Hai, L., You, Z.Z., et al., Study on Physical Simulation Test of Improving the Stability of Tailings Dam, Chinese J. Rock Mech. Eng., 2016, vol. 26, no. 12, pp. 86–91.

    Google Scholar 

  40. Jing, X.F., Cai, Z.Y., and Liu, K.H., Buffering Effect of Landslide Dam on Debris Flow Surging from Tailings Dam-Break, China Safety Sci. J., 2010, vol. 20, no. 2, pp. 270–276.

    Google Scholar 

  41. Jing, X.F., Cai, Z.Y., and Liu, K.H., Research on Comparable Selection of the Yellow River Estuary Model Sand, China Rural Water Hydropower, 2014, vol. 56, no. 9, pp. 43–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihai Zhang.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 4, pp. 26-39. https://doi.org/10.15372/FTPRPI20220404.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Zhang, Y. Physical Modeling of Tailings Dams in China: A Review. J Min Sci 58, 548–560 (2022). https://doi.org/10.1134/S1062739122040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122040044

Keywords

Navigation