Skip to main content
Log in

Information Technologies in Problems of Nonlinear Geomechanics. Part I: Earth Remote Sensing Data and Lineament Analysis of Deformation Wave Processes

  • GEOINFORMATION SCIENCE
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors propose a novel methodological approach to up-to-date integrated satellite monitoring for studying origination of source zones of natural and induced catastrophes at large-scale subsoil use facilities in Siberia. This approach uses multimodal experimental geomechanical and geodynamic data of Earth remote sensing and digital technologies. This allows orientation at various applied aspects of mining technologies with regard to transition to processing and analysis of Big Data on slow deformation wave processes from the standpoint of nonlinear ‘geomechanical thermodynamics’. The article describes the estimation method for the Earth’s crust surface in Kuzbass Coal Basin using the lineament field analysis and the two-dimensional radar-base satellite data of Earth remote sensing. The use of the geoinformation technology software and testing results are presented as a case-study of a disastrous landslide at a large open pit coal mine in linkage with thermodynamic periods in the geomechanical behavior of the object of monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Oparin, V.N., Adushkin, V.V., Baryakh, A.A. et al, Geomekhanicheskie polya i protsessy: eksperimental’no-analiticheskie issledovaniya formirovaniya i razvitiya ochagovykh zon katastroficheskikh sobytii v gorno-tekhnicheskikh i prirodnykh sistemakh (Geomechanical Fields and Processes: Experimental and Analytical Research of Initiation and Growth of Disaster Sources in Geotechnical and Natural Systems), N.N. Mel’nikov (ed.), Novosibirsk: SO RAN, 2018–2019, vols. 1 and 2.

    Google Scholar 

  2. Oparin, V.N., Potapov, V.P., Kiryaeva, T.A., and Yushkin, V.F., Development of Methods and Means for Integrated Geo-Information-Based Analysis of Influence Exerted by Nonlinear Deformation and Wave Processes Induced by Seismic Forces on Geomechanical Behavior of Pit Walls and on Gas-Dynamic Activity in Coal Mines in Kuzbass, Mining Information and Analytical Bulletin—GIAB, 2020, no. 9, pp. 5–39.

  3. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum WavesiIn Stressed Media, Journal of Mining Science, Part I: 2012, vol. 48, no. 2, pp. 203–222; Part II: 2013, vol. 49, no. 2, pp. 175–209; Part III: 2014, vol. 50, no. 4, pp. 623–645; Part IV: 2016, vol. 52, no. 1, pp. 1–35.

  4. Oparin, V.N., Adushkin, V.V., Vostrikov, V.I., Yushkin, V.F., Kiryaeva, T.A. et al., An Experimental and Theoretical Framework of Nonlinear Geotomography, Mining Information and Analytical Bulletin—GIAB, Part I: Research problem Statement and Justification, 2019, no. 1, pp. 5–25; Part II: Dynamic and Kinematic Characteristics of Pendulum Waves in High-Stress Geomedia and Processes of Seismic Emission, 2019, no. 11, pp. 5–26; Part III: Promising Systems to Control Deformation and Wave Processes in Surface and Underground Mining, 2019, no. 12, pp. 5–29.

  5. Oparin, V.N., Pendulum Waves and "Geomechanical Temperature", The 2nd Sino-Russian Conference Proceedings: Nonlinear Geomechanics and Geodynamics of Deep-Level Mining, Novosibirsk: IGD SO RAN, 2012, pp. 169–172.

  6. Feynman, R, Leighton, R, and Sands, M., The Feynman’s Lectures on Physics, Addison–Wesley, 1964.

  7. Levich, V.G., Vdovin, Yu.A., and Myamlin, V.A., Kurs teoreticheskoi fiziki (Theoretical Physics Course), Moscow: Nauka, 1971, vol. II.

    Google Scholar 

  8. Stavrogin, A.N. and Protosenya, N.G., Prochnost’ gornykh porod i ustoichivost’ vyrabotok na bol’shikh glubinakh (Rock Strength and Stability of Deep-Level Tunnels), Moscow: Nedra, 1985.

    Google Scholar 

  9. Guzev, M.A. and Makarov, V.V., Deformirovanie i razrushenie sil’no szhatykh gornykh porod vokrug vyrabotok (Deformation and Failure of Strongly Compressed Rocks Surrounding Undground

  10. Annin, B.D. and Zhigalkin, V.M., Povedenie materialov v usloviyakh slozhnogo nagruzheniya (Behavior of Materials in Complex Loading), Novosibirsk: SO RAN, 1999.

    Google Scholar 

  11. Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparing, V.N. et al., Phenomenon of Zonal Rock Disintegration around Underground Openings, Doklady Akad. Nauk, 1986, vol. 289, no. 5, pp. 088–1094.

    Google Scholar 

  12. Sadosvky, M.A., Kocharyan, G.G., and Rodionov, V.N., Block Rock Mass Mechanics, Doklady Akad. Nauk, 1988, vol. 302, no. 2, pp. 306–307.

    Google Scholar 

  13. Sadovsky, M.A., Hierarchy from Dusts to Planets, Zemlya i Vselennaya, 1984, no. 6, pp. 5–9.

  14. Bykov, V.G., Earth’s Deformation Waves: Concept, Observations and Models, Geologiya i Geofizika, 2005, vol. 46, no. 11, pp. 1176–1190.

    Google Scholar 

  15. Vikulin, A.V., Fizika volnovogo seismicheskogo protsessa (Physics of Seismic Wave Process), Petropavlovsk-Kamchatsky: KGPU, 2003.

    Google Scholar 

  16. Mikhailov, A.E., Korchuganova, N.I., and Baranov, Yu.B., Distantsionnye metody v geologii (Remote Methods in Geology), Moscow: Nedra, 1993.

    Google Scholar 

  17. Korchuganov, N.I. and Korsakov, A.K., Distantsionnye metody geologicheskogo kartirovaniya (Remote Methods of Geological Mapping), Moscow: KDU, 2009.

    Google Scholar 

  18. Donov, V.V., Razrabotka metodiki mnogourovnego leniamentnogo analiza aerkosmicheskikh izobrazhenii (Multi-Level Lineament Analysis Procedure for Satellite Images), Moscow, 2009.

  19. Poletaev, A.I., Lineament Analysis as One of the Basic Remote Methods of Geoecological Decoding, Ekologia i nauki of zemle (Ecology and the Geosciences), Dubna, 2006.

  20. Kolobova, N.S., Metodiki i tekhnologii distantsionnogo zondirovaniya Zemli s tsel’yu otsenki parametrov tektonicheskikh protsessov (Procedures and Technologies of the Remote Sensing for Assessing Parameters of Tectonic Processes), Moscow, 2010.

  21. Zlatopol’sky, A.A., Multiscale Analysis of the Earth’s Surface Texture Orientation. Special Sales, Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa (Current Challenges of Remote Sensing from Space), Moscow, 2012.

  22. Zlatopol’sky, A.A. and Malkin, B.V., Avtomatizirovannyi analiz orientirovannykh kharakteristik dannykh distantsionnogo zondirovaniya (Automatic Analysis of Oriented Characteristics of the Remote Sensing Data), Moscow, 2012.

  23. Kadyrov, R.I., Nugmanov, I.I., and Chernova, I.Yu., Avtomatizirovannyi lineamentnyi analiz (Automatic Lineament Analysis), Kazan, 2012.

  24. Sudarikov, V.N. and Kalinina, O.N., Osnovy aerokosmofotos’emki (Elements of GPS), Orenburg, 2017.

  25. Schowengerdt, R., Remote Sensing. Models and Methods for Image Processing, Academic Press, 2007.

    Google Scholar 

  26. Sven Tiren, Lineament Interpretation. Short Review and Methodology, 2010.

  27. Eremeev, V.V., Sovremennye tekhnologii obrabotki dannykh distantsionnogo zondirovaniya Zemli (Modern Technologies of the Remote Sensing Data Processing), Moscow, 2018.

  28. Seal, M. and Summon, M.J., Practical Algorithms for Image Analysis, 2000.

  29. Matlab Documentation. Available at: https://www.mathworks.com/?s_tid=gn_logo. Accessed at: 10 March 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Potapov or V. N. Oparin.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 3, pp. 157-176. https://doi.org/10.15372/FTPRPI20220316.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, V.P., Oparin, V.N., Mikov, L.S. et al. Information Technologies in Problems of Nonlinear Geomechanics. Part I: Earth Remote Sensing Data and Lineament Analysis of Deformation Wave Processes. J Min Sci 58, 486–502 (2022). https://doi.org/10.1134/S1062739122030164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122030164

Keywords

Navigation