Skip to main content
Log in

Removal of Suspended Solids from Industrial Wastewater

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article offers a review of the existing methods to remove suspended solids from industrial wastewater. The mechanical and physicochemical techniques which are in use already and to be in service in the short term are discussed. It is shown that each specific mine needs its own selection of a package of wastewater treatment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Askaer, L., Schmidt, L.B., Elberling, B., Asmund, G., and Jónsdóttir, I.S., Environmental Impact on an Arctic Soil–Plant System Resulting from Metals Released from Coal Mine Waste in Svalbard (78̊ N), Water, Air, and Soil Pollut., 2008, vol. 195, no. 1, pp. 99–114.

    Article  Google Scholar 

  2. Krasavtseva, E., Maksimova, V., and Makarov, D., Conditions Affecting the Release of Heavy and Rare Earth Metals from the Mine Tailings Kola Subarctic, Toxics, 2021, vol. 9, no. 7, p. 163.

    Article  Google Scholar 

  3. Lindsay, M.B., Moncur, M.C., Bain, J G., Jambor, J.L., Ptacek, C.J., and Blowes, D.W., Geochemical and Mineralogical Aspects of Sulfide Mine Tailings, Appl. Geochem., 2015, vol. 57, pp. 157–177.

    Article  Google Scholar 

  4. Report on Environmental Protection of the Murmansk Region in 2020. Ministry of Natural Resources, Ecology and Fisheries of the Murmansk Region, 2021. Available at: https://gov-murman.ru/region/environmentstate.

  5. Younger, P.L., Banwart, S.A., and Hedin, R.S., Mine Water: Hydrology, Pollution, Remediation, Kluwer Academic Press: Dordrecht, Netherlands, 2002.

    Book  Google Scholar 

  6. Wolkersdorfer, C., Lopes, D.V., and Nariyan, E., Intelligent Mine Water Treatment—Recent International Developments, Sanierte Bergbaustandorte im Spannungsfeld zwischen Nachsorge und Nachnutzung, WISSYM, 2015.

  7. Banks, D., Younger, P.L., Arnesen, R.T., Iversen, E.R., and Banks, S.B., Mine-Water Chemistry: The Good, the Bad and the Ugly, Environ. Geol., 1997, vol. 32, no. 3, pp. 157–174.

    Article  Google Scholar 

  8. Henze, M., Harremoes, P., la Cour Jansen, J., and Arvin, E., Wastewater Treatment. Biological and Chemical Processes, Springer Berlin Heidelberg, 1997.

    Google Scholar 

  9. Hodges, A., Fica, Z., Wanlass, J., VanDarlin, J., and Sims, R., Nutrient and Suspended Solids Removal from Petrochemical Wastewater via Microalgal Biofilm Cultivation, Chemosphere, 2017, vol. 174, pp. 46–48.

    Article  Google Scholar 

  10. Zinov’ev, E.A. and Kitaev, A.B., On the Impact of Suspended Solids on Hydrofauna, Izv. SamNTs RAN, 2015, vol. 17, no. 5, pp. 283–288.

    Google Scholar 

  11. Boujounoui, K., Abidi, A., Bacaoui, A., Elamari, K., and Yaacoubi, A., Effect of Water Quality on the Performance of the Galena and Blend Flotation: Case of Draa Sfar Complex Sulphide Ore, Morocco, Moroccan J. Chem., 2019, vol. 7, no. 2, pp. 337–345.

    Google Scholar 

  12. Liu, W., Moran, C., and Vink, S., A Review of the Effect of Water Quality on Flotation, Miner. Eng., 2013, vol. 53, pp. 91–100.

    Article  Google Scholar 

  13. Muzinda, I. and Schreithofer, N., Water Quality Effects on Flotation: Impacts and Control of Residual Xanthates, Miner. Eng., 2018, vol. 125, pp. 34–41.

    Article  Google Scholar 

  14. Moreva, Yu.L., Chernobrezhskiy, Yu.M., and Lorentsson, A.V., Teoreticheskie osnovy ochistki i obezvrezhivaniya vybrosov i sbrosov. Ch. 1 (Theoretical Foundations for Purifying and Neutralizing Emissions and Discharges. Part 1), Saint Petersburg: VShTE SPbGUPTD, 2018.

    Google Scholar 

  15. Shlekova, I.Yu. and Knysh, A.I., Mekhanicheskaya ochistka stochnykh vod (Wastewater Treatment by Mechanical Methods), Omsk, 2020.

  16. Vertinskiy, A.P., Present-Day Wastewater Treatment Methods: Application Features and Problems, Innovatsii i Investitsii, 2019, no. 1, pp. 175–182.

  17. Malinovskaya, T.A., Kobrinskiy, I.A., Kirsanov, O.S., and Reinfart, V.V., Razdelenie suspenzii v khimicheskoi promyshlennosti (Separation of Suspensions in the Chemical Industry), Moscow: Khimiya, 1983.

    Google Scholar 

  18. Lanina, T.D., Prokhorenko, N.N., and Selivanova, E.S., Purification of Oily Waters in the Field of Centrifugal Forces, Stroitel’stvo Neftyanykh i Gazovykh Skvazhin na Sushe i na More, 2012, no. 7, pp. 33–38.

  19. Starostin, A.G., Fedotova, O.A., and Kobeleva, A.R., Wastewater Purification from Finely Dispersed Particles Using Hydrocyclone, Vestn. PNIPU. Khim. Tekhnologiya i Biotekhnologiya, 2020, no. 1, pp. 99–112.

  20. Dueck, J., Farghaly, M., and Neesse, Th., The Theoretical Partition Curve of the Hydrocyclone, Miner. Eng., 2014, vol. 62, pp. 25–30.

    Article  Google Scholar 

  21. Kurnikov, A.S. and Raspopov, A.V., Wastewater Purification in Hydrocyclones, Nauchnye Problemy Vodnogo Transporta, 2003, no. 5, pp. 27–33.

  22. Navesov, Sh., Erimbetova, A., Izleutov, G., Baibatyrova, B., Dosbaeva, A., and Askerbekova, A., Study of Wastewater Filtration Process at Machinery Production, Aktual’nye Nauchnye Issledovaniya v Sovremennom Mire, 2017, nos. 1–3, pp. 138–142.

  23. Zueva, S.B., Ekozashchitnye tekhnologii sistem vodootvedeniya predpriyatiy pishchevoy promyshlennosti (Eco-Protective Technologies of Water Disposal Systems of Food Industry Enterprises), Voronezh: VGU, 2011.

    Google Scholar 

  24. Maximovich, N. and Khayrulina, E., Artificial Geochemical Barriers for Environmental Improvement in a Coal Basin Region, Environ. Earth Sci., 2014, vol. 72, no. 6, pp. 1915–1924.

    Article  Google Scholar 

  25. Maximovich, N. and Khayrulina, E., Geokhimicheskie bar’yery i okhrana okruzhayushchei sredy (Geochemical Barriers and Environmental Protection), Perm: PGU, 2011.

    Google Scholar 

  26. Chanturiya, V., Masloboev, V., Makarov, D., Nesterov, D., Bajurova, Yu., Svetlov, A., and Men’shikov, Yu., Geochemical Barriers for Environment Protection and Recovery of Nonferrous Metals, J. Environ. Sci. Health, Part A, 2014, vol. 49, no. 12, pp. 1409–1415.

    Article  Google Scholar 

  27. Baltrénaité, E., Lietuvninkas, A., and Baltrénas, P., Biogeochemical and Engineered Barriers for Preventing Spread of Contaminants, Env. Sci. Pollut. Res., 2018, vol. 25, no. 6, pp. 5254–5268.

    Article  Google Scholar 

  28. Vezhenkova, I.V., Druzhinina, K.V., and Zaitseva, A.A., Drinking Water Treatment Methods, Proc. of XX Youth Int. Sci. Pract. Conf. of Students, Post-Graduates and Young Scientists—Science of XXI Century: A New Approach, Saint Petersburg, 2018.

  29. Getmantsev, S.V., Nechaev, I.A., and Gandurina, L.V., Ochistka proizvodstvennykh stochnykh vod koagulyantami i flokulyantami (Treatment of Industrial Wastewater with Coagulants and Flocculants), Moscow: ASV, 2008.

    Google Scholar 

  30. Kachalova, G.S., Coagulation-Sorption Wastewater Treatment, Voda i Ekologiya: Problemy i Resheniya, 2019, no. 2, pp. 32–39.

  31. Butler, E., Hung, Y.T., Yeh, R.Y.L., Suleiman, A., and Ahmad, M., Electrocoagulation in Wastewater Treatment, Water, 2011, vol. 3, no. 2, pp. 495–525.

    Article  Google Scholar 

  32. Chaiwong, N. and Nuntiya, A., Influence of pH, Electrolytes and Polymers on Flocculation of Kaolin Particle, Chiang Mai. J. Sci., 2008, vol. 35, pp. 11–16.

    Google Scholar 

  33. Gandurina, L.V., Characteristics of Synthetic Flocculants Used for Wastewater Treatment, Voda i Ekologiya: Problemy i Resheniya, 2006, no. 1, pp. 40–52.

  34. Park, J., Oh, C., Han, Y., and Ji, S., Optimizing the Addition of Flocculants for Recycling Mineral-Processing Wastewater, Geosystem Eng., 2016, vol. 19, no. 2, pp. 83–88.

    Article  Google Scholar 

  35. Ali, N., Zaheer, S., Khan, W.A., and Malik, S.R., Removal of Suspended Solids and Turbidity from Wastewater Using Natural and Primary Coagulant, J. Pakistan Inst. Chem. Eng., 2017, Vol. 45, No. 2.

  36. Velyaev, Yu.O., Mayorov, D.V., and Zakharov, K.V., Improving the Technology to Produce Aluminum-Silicon Coagulant-Flocculant Based on Sulfuric Acid Breakdown of Nepheline, Khimicheskaya Tekhnologiya, 2011, vol. 12, no. 10, pp. 614–620.

    Google Scholar 

  37. Kruchinina, N.E. and Kuzin, E.N., RF patent no. 2588535, Byull. Izobret., 2016, no. 18.

  38. Volkova, M.A. and Nedugov, A.N., Nepheline Flocculants-Coagulants, Problems of Mineralogy, Petrography and Metallogeny. Scientific Lectures in Memory of P. N. Chirvinsky, 2016, no. 19, pp. 342–345.

  39. Kuzin, E.N., Complex Coagulants in Removal of Suspended Solids from Wastewater, Trudy KNTs RAN, 2019, vol. 10, nos. 1–3, pp. 164–168.

  40. Wang, Y. and Zhang, J., Experimental Investigation on Removal of Suspended Solids from Wastewater Produced in the Processing of Carclazyte Catalyst, Desalination, 2009, vol. 244, nos. 1–3, pp. 72–79.

    Article  Google Scholar 

  41. Babenkov, E.D., Ochistka vody koagulyantami (Water Treatment with Coagulants), Moscow: Nauka, 1997.

    Google Scholar 

  42. Vinogradov, S.S., Ekologicheski bezopasnoe galvanicheskoe proizvodstvo (Environmentally Friendly Electroplating Production), Moscow: Globus, 2002.

    Google Scholar 

  43. Zubareva, G.I., Flotation in Technological Schemes of Industrial Wastewater Treatment, Construction and Geotechniques, 2019, vol. 10, no. 4, pp. 67–77.

    Article  Google Scholar 

  44. Walz, J.Y., Colloidal Particles at Liquid Interfaces, J. Am. Chem. Soc., 2007, vol. 129, no. 13, pp. 4106–4107.

    Article  Google Scholar 

  45. Alekseev, D.V., Nikolaev, N.A., and Laptev, A.G., Kompleksnaya ochistka stokov promyshlennykh predpriyatii metodom struinoi flotatsii (Integrated Treatment of Wastewater from Industrial Enterprises by Jet Flotation), Kazan: KGTU, 2005.

    Google Scholar 

  46. Alekseev, E.V., Osnovy tekhnologii ochistki stochnykh vod flotatsiei (Fundamentals of Technology of Wastewater Treatment by Flotation), Moscow: ASV, 2009.

    Google Scholar 

  47. Crini, G. and Lichtfouse, E., Advantages and Disadvantages of Techniques Used for Wastewater Treatment, Environ. Chem. Lett., 2019, vol. 17, no. 1, pp. 145–155.

    Article  Google Scholar 

  48. Kochetov, L.M., Sazhin, B.S., Sazhin, V.B., Popov, I.A., Khazanov, G.I., and Butok, A.S., The Use of Pressure Flotation in Wastewater Treatment, Uspekhi v Khimii i Khim. Tekhnologii, 2010, vol. 24, no. 3, pp. 113–117.

    Google Scholar 

  49. Litvinov, V.F., Kulakova, S.I., and Kulakova, S.G., RF patent no. 2268860, Byull. Izobret., 2006, no. 3.

  50. Casbier, D., Baria, R., Patel, S., Matusek, T., and Reeves, T., RF patent no. 2747663, Byull. Izobret., 2021, no. 14.

  51. Bodzek, M. and Konieczny, K., Comparison of Various Membrane Types and Module Configurations in the Treatment of Natural Water by Means of Low-Pressure Membrane Methods, Sep. Purif. Technol., 1998, vol. 14, nos. 1–3, pp. 69–78.

    Article  Google Scholar 

  52. Adham, S.S., Snoeyink, V.L., Clark, M.M., and Bersillon, J.L., Predicting and Verifying Organics Removal by PAC in an Ultrafiltration System, J. Am. Water Works Assoc., 1991, vol. 83, no. 12, pp. 81–91.

    Article  Google Scholar 

  53. Agboola, O., Mokrani, T., Sadiku, E.R., Kolesnikov, A., Olukunle, O.I., and Maree, J.P., Characterization of Two Nanofiltration Membranes for the Separation of Ions from Acid Mine Water, Mine Water Environ., 2017, vol. 36, no. 3, pp. 401–408.

    Article  Google Scholar 

  54. Lin, S.W., Pérez Sicairos, S., and Félix Navarro, R.M., Preparation, Characterization and Salt Rejection of Negatively Charged Polyamide Nanofiltration Membranes, J. Mexican Chem. Soc., 2007, vol. 51, no. 3, pp. 129–135.

    Google Scholar 

  55. Schäfer, A.I., Fane, A.G., and Waite, T.D., Fouling Effects on Rejection in the Membrane Filtration of Natural Waters, Desalination, 2000, vol. 131, nos. 1–3, pp. 215–224.

    Article  Google Scholar 

  56. Jarusutthirak, C., Amy, G., and Croué, J.P., Fouling Characteristics of Wastewater Effluent Organic Matter (EfOM) Isolates on NF and UF Membranes, Desalination, 2002, vol. 145, nos. 1–3., pp. 247–255.

    Article  Google Scholar 

  57. Asfaha, Y.G., Tekile, A.K., and Zewge, F., Hybrid Process of Electrocoagulation and Electrooxidation System for Wastewater Treatment: A Review, Cleaner Eng. Technol., 2021, vol. 4, p. 100261.

    Article  Google Scholar 

  58. Chen, G., Electrochemical Technologies in Wastewater Treatment, Sep. Purif. Technol., 2004, vol. 38, no. 1, pp. 11–41.

    Article  Google Scholar 

  59. Kuokkanen, V., Kuokkanen, T., Rämö, J., and Lassi, U., Recent Applications of Electrocoagulation in Treatment of Water and Wastewater—A Review, Green Sustainable Chem., 2013, vol. 3, no. 2, pp. 89–121.

    Article  Google Scholar 

  60. Holt, P.K., Barton, G.W., and Mitchell, C.A., The Future for Electrocoagulation as a Localized Water Treatment Technology, Chemosphere, 2005, vol. 59, no. 3, pp. 355–367.

    Article  Google Scholar 

  61. Svetlov, A.V., Minenko, V.G., Samusev, A.L., and Salakhov, E.M. Mine Water Treatment at the Severny Mine of JSC Kola MMC by Electrochemical Coagulation, Tsvet. Metally, 2019, no. 11, pp. 52–56.

  62. Fedotov, G.P., Kravtsov, V.A., Uvarov, A.D., Zinchenko, V.M., Butkeev, V.G., Blokhin, N.N., and Avargin, V.A., RF patent no. 2038319, Byull. Izobret., 1995.

  63. Stefanyuk, B.M., RF patent no. 2031857, Byull. Izobret., 1995, no. 9.

  64. Korostovenko, V.V., Gron’, V.A., Shakhrai, S.G., Kaplichenko, N.M., and Galaiko, A.V., Electropulse Method of Wastewater Treatment at Coal Deposits, Sovremennye Naukoemkie Tekhnologii, 2013, no. 10-1, pp. 164–169.

  65. Gavrilin, P.A., Shibunya, V.S., Puchkov, V.V., and Sarukhanov, R.G., RF patent no. 2467956, Byull. Izobret., 2012, no. 33.

  66. Bakharev, S.A., RF patent no. 2615398, Byull. Izobret., 2017, no. 7.

  67. Minenko, V.G., Justification and Design of Electrochemical Recovery of Saponite from Recycled Water, J. Min. Sci., 2014, vol. 50, no. 3, pp. 595–600.

    Article  Google Scholar 

  68. Chanturia, V.A., Minenko, V.G., Samusev, A.L., Timofeev, A.S., and Ostrovskaya, G.Kh., Electrochemical Separation of Saponite-Containing Waters at Enterprises of JSC Severalmaz, Obogashch. Rud, 2014, no. 1, pp. 49–52.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Krasavtseva or D. V. Makarov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 3, pp. 136-146. https://doi.org/10.15372/FTPRPI20220314.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasavtseva, E.A., Maksimova, V.V., Makarov, D.V. et al. Removal of Suspended Solids from Industrial Wastewater. J Min Sci 58, 466–475 (2022). https://doi.org/10.1134/S1062739122030140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122030140

Keywords

Navigation