Skip to main content
Log in

Kinetics of Experimental Adsorption of Nickel Metal by Activated Carbon

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

An Erratum to this article was published on 01 June 2022

This article has been updated

Abstract

The objective of this study is the recuperation of metal nickel by adsorption with activated carbon prepared from natural waste (the peel of the apricot kernel), where adsorption is controlled by a chemical phenomenon driven by a series of factors. The adsorption efficiency was evaluated after carbonization of the raw material at 600 °C and after its activation with citric acid at 500 °C. The characterization of the material after physicochemical treatment has shown the possibility of its improvement. The IR spectroscopy technique has shown the material becomes very rich in carbon and oxygen, and is well functionalized. The activated carbon can adsorb nickel efficiently, and then inverted conditions ensure efficient elution. Kinetic adsorption is dependent on the activated carbon, while equilibrium loading is not but is dependent on plant conditions. The kinetic study of the optimal adsorption of nickel ions follows the models of Langmuir and Freundlich, and exhibits a high affinity between the metal nickel examined and the carbon active, which enables the highest adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

REFERENCES

  1. Gergova, K., Petrov, N., and Eser, S., Adsorption Properties and Microstructure of Activated Carbons Produced from Agricultural By-Products by Steam Pyrolysis, Carbon, 1994, vol. 32, no. 4, pp. 693–702.

    Article  Google Scholar 

  2. Rodriguez-Reinoso, F., Molina-Sabio, J.M., Perz-Lledo, and Prado-Burguete, C., A Comparison of the Porous Texture of Two CO2 Activated Botanic Materials, Carbon, 1985, vol. 23, no. 1, pp. 19–24.

    Article  Google Scholar 

  3. Madrau S. Caractérisation des Adsorbants pour la Purification de l’Hydrogène par Adsorption Modulée en Pression, Thèse de Doctorat, Institut national polytechnique de Lorraine, 1999.

  4. Yeddou Mezenner, N., Bensaadi, Z., Lagha, H., and Bensmaili, A., Etude de l’Adsorbation d’Une Mixture de Composes Biorecalcitrants en Milieu Aqueux, Larhyss J., 2012, no. 11, pp. 7–16.

  5. Bouchemal, N., Merzougui, Z., and Addoun, F., Adsorption en Milieux Aqueux de Deux Colorants sur Charbons Actifs à Base de Noyaux de Datte, J. Algerian Chemical Soc. (JSAC), 2011, vol. 21, no. 1, pp. 1–14.

    Google Scholar 

  6. Sedira, N., Etude de l’Adsorption des Métaux Lourds sur un Charbon Actif Issu de Noyaux de Dattes, Univ. Mohamed-Chérif Messaidia S/A, 2012–2013.

  7. Nouri, L. and Hamdaoui, O., Ultrasonication-Assisted Sorption of Cadmium from Aqueous Phase by Wheat Bran, J. Phys. Chem., 2007, A 111, pp. 8456–8463.

    Article  Google Scholar 

  8. Naiya, T.K., Bhattacharya, A.K., and Das, S.K., Adsorption of Cd(II) and Pb(II) from Aqueous Solutions on Activated Alumina, J. Colloid Interface Sci., 2009, vol. 333, no. 1, pp. 14–26.

    Article  Google Scholar 

  9. Do, D.D., Adsorption Analysis: Equilibria and Kinetics, London, Imperial College Press, 1998.

    Book  Google Scholar 

  10. Chaouch, N., Utilisation des Sous-Produits du Palmier Dattier dans le Traitement Physico-Chimique des Eaux Polluées, Diplôme de Doctorat, Université Hadj Lakhdar, Batna, 2014.

  11. Gupta, V.K., Nayak, A., and Bhushan, B., A Critical Analysis on the Efficiency of Activated Carbons from Low-Cost Precursors for Heavy Metals Remediation, Environmental Sci. Technol., 2015, vol. 45, pp. 613–668.

    Article  Google Scholar 

  12. Benamraoui, F., Elimination des Colorants Cationiques par des Charbons Actifs Synthétisés à Partir des Résidus de l’Agriculture, Diplôme de Magister, Université Ferhat Abbas Setuf-1 Ufas, Algérie, 2014.

  13. Bouchemal, F. and Achour, S., Essais d’Adsorption de la Tyrosine sur Charbon Actif en Grains et en Poudre, Larhyss J., 2007, no. 6, pp. 81–89.

  14. Baudu, M., Guibaud, G., Raveau, D., and Lafrance, P., Prévision de l’Adsorption de Molécules Organiques en Solutions Aqueuses en Fonction de Quelques Caractéristiques Physico-Chimiques de Charbons Actifs, Water Quality Res. J. Canada, 2001, vol. 36, no. 4, pp. 631–657.

    Article  Google Scholar 

  15. Marsden, J. and House, I., The Chemistry of Gold Extraction, Ellis Horwood, Chichester, 1992.

    Google Scholar 

  16. Gallagher, N.P., Hendrix, J.L., Milosavljevic, E.B., Nelson, J.H., and Solujic, L., Affinity of Activated Carbon towards Some Gold (I) Complexes, Hydrometallurgy, 1990, vol. 25, pp. 305–316.

    Article  Google Scholar 

  17. Errais, E., Rèactivitè de Surface d’Argiles Naturelles: Etude de l’Adsorption de Colorants Anioniques, Diplôme de Docteur, Université de Strasbourg, 2011.

  18. Ouattara D. Kra, N’Da Arsène Kouadio, Grah Patrick Atheba, Coulibaly B., A. N’guadi Blaise, Gbassi K. Gildas, and Trokourey, A., Modélisation des Propriétés Adsorbantes de Charbons Activés Issus de Deux Variétés d’Acacia (Auriculiformis et Mangium), Int. J. Innovation Scientific Res., 2015, vol. 13, no. 2, pp. 550–551.

    Google Scholar 

  19. Freundlich, H.Z., Adsorption in Solutions, Phys. Chem., 1906, vol. 57, pp. 384–410.

    Google Scholar 

  20. Langmuir, I., Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum, J. Amer. Chem. Soc., 1918, vol. 40, pp. 1361–1403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Elbar.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 1, pp. 163-169. https://doi.org/10.15372/FTPRPI20220117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbar, D., Rahaly, H. & Guiedeui, A. Kinetics of Experimental Adsorption of Nickel Metal by Activated Carbon. J Min Sci 58, 144–150 (2022). https://doi.org/10.1134/S1062739122010173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122010173

Keywords

Navigation