Skip to main content
Log in

Modeling Frozen Coal Holding Conditions in Buried Storage Rooms in the Permafrost Zone

  • MINING THERMOPHYSICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The study addresses efficiency of natural cold and the permafrost properties in the Central and Arctic Yakutia in holding of frozen coal in buried storage rooms. The heat transfer modeling takes into account the climate, parameters of a storage room and heat insulation. It is shown that coal thaws less than the host rocks because of its low thermal conductivity. When a storage room is filled in winter, coal will remain frozen for a few years, and heat insulation will greatly reduce the rate of thawing in the overburden. It is emphasized that as against the width and slope of the storage room, its occurrence depth is the main factor to govern the size of the thawed zone by the end of the warm period of storage. Natural cold in the buried storage room decreases coal oxidation, preserves coal properties, and improves energy security of the hard-to-reach areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Gavrilov, V.L., Khokholov, Yu.A., and Fedorov, V.I., J. Fundament. Appl. Min. Sci., 2019, vol. 6, no. 3, pp. 219–225.

  2. Kurilko, A.S., Kiselev, V.V., Khokholov, Yu.A., and Romanova, E.K., Regulirovanie teplovogo rezhima podzemnykh sooruzhenii skladskogo i spetsial’nogo naznacheniya v usloviyakh Severa (Thermal Condition Control in Underground Storages and Special-Duty Structures in the North), Yakutsk: Inst. merzlotovedeniya SO RAN, 2011.

    Google Scholar 

  3. Alipatov, S.N., Advantages of Underground Construction in Terms of Energy Efficiency, Fed. Stroit. Rynok, 2011, no. 97, URL: http://fsr-stroy.ru/archive/10883 (accessed 14 Sep 2021).

  4. Khrisanfova, A.I. and Litvinov, V.L., Tekhnologiya khraneniya uglei i meropriyatia po sokrashcheniyu poter’ topliva (Coal Storage Technology and Fuel Loss Reduction Activities), Moscow: Nedra, 1970.

    Google Scholar 

  5. Il’in, VV. and Fomin, EI., Ore Rehandling Technologies Using Covered Buried Storages at Sea and River Ports, Proc. Conf. Interstroimekh-2018, Moscow: NIMGSU, 2018, pp. 342–344.

  6. Miroshnichenko, D.V., Drozdnik, I.D., Kaftan, Yu.S., Ivanova, E.V., Sorokotyaga, K.N., and Desna, N.A., Kinetic Characteristics of Coal Oxidation, Koks Khim., 2012, no. 3, pp. 6–15.

  7. Miroshnichenko, D.V., Desna, N.A., and Kaftan, Yu.S., Coal Oxidation Analysis at a Commercial Scale. Report 4: Temperature in a Coal Pile, Koks Khim., 2015, no. 2, pp. 2–8.

  8. Chemezov, E.N. and Fedorova, S.E., Reduction in Fire Hazard in Open Pit Coal Mines in the North, Vestn. YAGU, 2005, no. 4, pp. 101–106.

  9. Vesil’ev, P.N., Kurilko, A.S., Khokholov, Yu.A., and Sherstov, V.A., Teplovoi rezhim ugol’nykh shakht Yakutii i sposoby ego regulirovaniya (Thermal Regime in Coal Mines in Yakutia and the Control Methods), Yakutsk: YANTS SO RAN, 2009.

    Google Scholar 

  10. Khokholov, Yu.A. and Solov’ev, D.V., Procedure of Joint Calculation of Temperature and Ventilation Mode in Uninterrupted Mining in Permafrost Zone, J. Min. Sci., 2013, vol. 49, no. 1, pp. 126–131.

    Article  Google Scholar 

  11. Golovatyi, I.I., Levin, L.Yu., Parshakov, O.S., and Diulin, D.A., Optimization of Frozen Wall Formation in Shaft Construction, Gornyi Zhurnal, 2018, no. 8, pp. 48–53.

  12. Levin, L.Yu., Semin, M.A., and Plekhov, O.A., Comparison of the Existing Methods to Calculate Frozen Wall Thickness in Shaft Construction, Vestn. PNIPU. Stroit. Arkhitekt., 2018, vol. 9, no. 4, pp. 93–103.

    Google Scholar 

  13. Kiyanitsa, L.A., Lugin, I.V., and Krasyuk, A.M., J. Fundament. Appl. Min. Sci., 2020, vol. 7, no. 1, pp. 298–303.

  14. Krasyuk, A.M., Lugin, I.V., and P’yankova, A.Yu., Delineation of Soil Body Area Exposed to Thermal Effect of Subway Stations and Tunnels, J. Min. Sci., 2015, vol. 51, no. 1, pp. 138–143. –128.

    Article  Google Scholar 

  15. Krasyuk, A.M., Lugin, I.V., and P’yankova, A.Yu., Temperature Field in Surrounding Ground of Shallow Tube Stations, J. Min. Sci., 2012, vol. 48, no. 3, pp. 465–473.

    Article  Google Scholar 

  16. Khokholov, Yu.A., Gavrilov, V.L., and Fedorov, V.I., Mathematical Modeling of Heat-Exchange Processes in Outdoor Storage of Frozen Coal, J. Min. Sci., 2019, vol. 55, no. 6, pp. 1013–1022.

    Article  Google Scholar 

  17. Tikhonov, A.N. and Samarsky, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1977.

    Google Scholar 

  18. Samarsky, A.A. and Moiseenko, B.D., Economic End-to-End Computation for Multidimensional Stefan’s Problem, Zh. Vych. Matem. Matem. Fiz., 1965, vol. 5, no. 5, pp. 816–827.

    Google Scholar 

  19. Samarsky, A.A., Teoriya raznostnykh skhem (Theory of Differential Schemes), Moscow: Nauka, 1983.

    Google Scholar 

  20. Samarsky, A.A. and Vabishchevich, P.N., Vychislitel’naya teploperedacha (Computational Heat Transfer), Moscow: Editorial URSS, 2003.

    Google Scholar 

  21. Fel’dman, G.M., Tetel’bauym, A.S., Shender, N.I., and Gavril’ev, R.I., Posobie po prognozu temperaturnogo rezhima gruntov Yakutii (Ground Temperature Prediction in Yakutia: Manual), Yakutsk: Inst. merzlotovedeniya SO AN SSSR, 1988.

    Google Scholar 

  22. Radiation Balance. URL: https://geographyofrussia.com/radiacionnyj-balans/ (accessed 20 May 2021).

  23. Votyakov, I.N., Fiziko-mekhanicheskie svoistva merzlykh i ottaivayushchikh gruntov Yakutii (Physical and Mechanical Properties of Frozen and Thawed Ground in Yakutia), Novosibirsk: Nauka, 1975.

    Google Scholar 

  24. Agroskin, A.A., Teplofizika tverdogo topliva (Thermophysics of Solid Fuel), Moscow: Nedra, 1980.

    Google Scholar 

  25. Gavril’ev, R.I. and Kuz’min, G.P., Thermophysical Characterization of Frozen Ground by Computations, Nauka Obraz., 2009, no. 4, pp. 51–54.

  26. Annual Average Precipitations in Russia. Evaporability. URL: http://www.protown.ru/information/hide/2850.html (accessed 20 May 2021).

  27. Kaimonov, M.V. and Panishev, S.V., Overburden Temperature Prediction in Open Pit Mines in the Permafrost Zone, Gorn. Inform.-Analit. Byull., 2015, no. 3, pp. 75–80.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Khokholov or V. L. Gavrilov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2022, No. 1, pp. 82-94. https://doi.org/10.15372/FTPRPI20220109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khokholov, Y.A., Gavrilov, V.L. Modeling Frozen Coal Holding Conditions in Buried Storage Rooms in the Permafrost Zone. J Min Sci 58, 74–81 (2022). https://doi.org/10.1134/S1062739122010094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739122010094

Keywords

Navigation