Skip to main content

Digital Twin of Solid Mineral Deposit

Abstract

In view of rapid digitalization in the mining business, the authors highlight some associate problems. The definition of a digital twin is explained, and the difference of a digital twin of a solid mineral deposit from the other digital twins in the industry is described. The key function of a digital twin of a mineral deposit consists in updating of the deposit representation and in the use of the updated data in reasoned decision-making concerning mining development. A digital twin is formed using a set of automation tools. The mining and geological information system MINEFRAME integrates and structures the geology and geotechnology data a solid mineral mining in a unified digital space and, thereby, generates a mining plan based on the actual geological information. The methods of geological and geotechnical modeling, including digital twins, enable enhancement of occupational safety and optimization of mining strategy.

This is a preview of subscription content, access via your institution.

Fig. 1

REFERENCES

  1. Lukichev, S.V. and Nagovitsyn, O.V., Digital Transformation of the Mining Industry: Past, Present, Future, Gornyi Zhurnal, 2020, no. 9, pp. 13–18.

  2. Günther, F., Mischo, H., Lösch, R., Grehl, S., and Güth, F., Increased Safety in Deep Mining with IoT and Autonomous Robots, Appl. Comp. Operat. Res. in the Miner. Industry Proc. of the 39th Int. Symp. APCOM 2019, Wroclaw, Poland, 2019.

  3. Lukichev, S.V. and Nagovitsyn, O.V., Mining and Geological Information Systems, Scope and Design Features, Mining Informational and Analytical Bulletin, 2016, no. 7, pp. 71–83.

  4. Dyson, N., Syama’s Automation Surge. https://www.miningmagazine.com/technology-innovation/news/ 1387604/syama%E2%80%99s-automation-surge. Application date 06.09.2021.

  5. Huang, L., Balamurali, M., and Silversides, K.L., Machine Learning Classification of Geochemical and Geophysical Data, Appl. Comp. Operat. Res. in the Mineral Industry Proc. of the 39th Int. Symp. APCOM 2019, Wroclaw, Poland, 2019.

  6. Avalos, S. and Ortiz, J.M., Recursive Convolutional Neural Networks in a Multiple-Point Statistics Framework, Appl. Comp. Operat. Res. in the Mineral Industry Proc. of the 39th Int. Symp. APCOM 2019, Wroclaw, Poland, 2019.

  7. Feng, S. and Ding, E., Designing Top Layer in Internet of Things for Underground Mines, Appl. Comp. Operations Res. in the Mineral Industry Proc. of the 39th Int. Symp. APCOM 2019, Wroclaw, Poland, 2019.

  8. Anistratov, K.Yu., Otkrytye gornye raboty—XXI vek. Spravochnik. T. 2 (Open-Pit Mining—XXI Century. Reference Book. Vol. 2), Moscow: OOO Sistema maksimum, 2019.

  9. Laptev, V.V., Zvonareva, S.V., and Nevedrov, A.S., Tools for Backfilling Modeling in MINEFRAME, Mining Informational and Analytical Bulletin, 2019, no. S37, pp. 187–194.

  10. Nagovitsyn, G.O., Bilin, A.L., and Zvonareva, S.V., New Opportunities of MGIS MINEFRAME for Process Design and Cost Calculation of Transportation Costs, Mining Informational and Analytical Bulletin, 2019, no. S37, pp. 241–248.

  11. Urazgulov, M.R., MINEFRAME System as the Basis for Building a Digital Model of Mining Operations (on the Example of Uchalinsky MPP JSC), Ratsional’noe osvoenie nedr, 2020, no. 2, pp. 54–58.

  12. Laptev, V.V., Smagin, A.V., and Gurin, K.P., Automated Tools for Processing Survey Data in MGIS MINEFRAME, Mining Informational and Analytical Bulletin, 2019, no. S37, pp. 195–204.

  13. Lukichev, S.V., Nagovitsyn, O.V., Ilyin, E.A., and Rudin, R.S., Digital Technologies for Engineering Support of Mining Operations—First Step to Smart Production Mining, Gornyi Zhurnal, 2018, no. 7, pp. 86–90.

  14. Coombes, J., I’d Like to be OK with MIK, UC: A Critique of Mineral Resource Estimation Techniques, Perth: Coombes Capability, 2016.

    Google Scholar 

  15. Gardan, I. et al., Mathématiques et CAO, Volume 1, Paris: HermeMs, 1986.

    Google Scholar 

  16. Kaputin, Yu.E., Gornye kompyuternye tekhnologii i geostatistika (Mining Computer Technologies and Geostatistics), Saint Petersburg: Nedra, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Nagovitsyn or A. V. Stepacheva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagovitsyn, O.V., Stepacheva, A.V. Digital Twin of Solid Mineral Deposit. J Min Sci 57, 1033–1040 (2021). https://doi.org/10.1134/S1062739121060168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121060168

Keywords

  • digital twin
  • solid mineral deposit
  • digital transformation
  • MINEFRAME
  • mining and geological information system
  • geological modeling