Bogdanov, O.S., Maksimov, I.I., Podnek, A.K., and Yanis, N.A., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1990.
Google Scholar
Abramov, A.A., Tekhnologiya obogashcheniya rud tsvetnykh metallov (Technology of Concentration of Non-Ferrous Metal Ores), Moscow: Nedra, 1983.
Google Scholar
Laskowski, J. and Castro, S., Flotation in Concentrated Electrolyte Solutions, Int. J. Min. Proc., 2015, vol. 144, pp. 50–55.
Article
Google Scholar
Ramos, O., Castro, S., and Laskowski, J.S., Copper–Molybdenum Ores Flotation in Sea Water: Floatability and Frothability, Min. Eng., 2013, vol. 53, pp. 108–112.
Article
Google Scholar
Li, W. and Li, Y., Improved Understanding of Chalcopyrite Flotation in Seawater Using Sodium Hexametaphosphate, Min. Eng., 2019, vol. 134, pp. 269–274.
Article
Google Scholar
Rebolledo, E., Laskowski, J.S., Gutierrez, L., and Castro, S., Use of Dispersants in Flotation of Molybdenite in Seawater, Min. Eng., 2017, vol. 100, pp. 71–74.
Article
Google Scholar
Mu, Y. and Peng, Y., The Effect of Saline Water on Copper Activation of Pyrite in Chalcopyrite Flotation, Min. Eng., 2019, vol. 131, pp. 336–341.
Article
Google Scholar
Suyantara, G.P.W., Hirajima, T., Miki, H., and Sasaki, K., Floatability of Molybdenite and Chalcopyrite in Artificial Seawater, Min. Eng., 2018, vol. 115, pp. 117–130.
Article
Google Scholar
Hirajima, T., Suyantara, G.P., Ichikawa, O., Elmahdy, A.M., Miki, H., and Sasaki, K., Effect of Mg2+ and Ca2+ as Divalent Seawater Cations on the Floatability of Molybdenite and Chalcopyrite, Min. Eng., 2016, vol. 96–97, pp. 83–93.
Article
Google Scholar
Wang, B. and Peng, Y., The Effect of Saline Water on Mineral Flotation—A Critical Review, Min. Eng., 2014, vol. 66–68, pp. 13–24.
Article
Google Scholar
Chanturia, V.A. and Vigdergauz, V.E., Elektrokhimiya sul’fidov. Teoriya i praktika (Electrochemistry of Sulfides. Theory and Practice), Moscow: Ruda i Metally, 2008.
Google Scholar
Chanturia, V.A. and Vigdergauz, V.E., Theory and Practice of Mineral Wettability Contrast Enhancement, Gornyi Zhurnal, 2005, no. 4, pp. 59–63.
Kondrat’ev, S.A. and Ryaboi, V.I., Evaluation of the Collective Force of Dithiophosphates and Its Relationship with the Selectivity of Useful Component Recovery, Obogashch. Rud, 2015, no. 2 (357), pp. 25–31.
Kondrat’ev, S.A., Fizicheskaya formula sorbtsii i yeye naznacheniye vo flotatsii (Physical Formula of Sorption and its Purpose in Flotation), Novosibirsk: Nauka, 2018.
Google Scholar
Nikolaev, A.A., Konyrova, A., and Goryachev, B.E., Study of Mineralization Kinetics of Air Bubble in a Suspension of Activated and Non-Activated Sphalerite, Obogashch. Rud, 2020, no. 1, pp. 26–31.
Nikolaev, A.A., So, T., and Goryachev, B.E., On the Kinetics of Air Bubble Mineralization with Sphalerite in Conditions of Using Thiol Collectors and their Compositions, Obogashch. Rud, 2016, no. 5 (365), pp. 14–18.