Skip to main content

Rare Metal and Rare Earth Recovery from Silica Gel—Eudialyte Concentrate Leaching Product

Abstract

The effect of various parameters (S:L ratio, duration, temperature and intensity of ultrasonic treatment) on recovery efficiency of zirconium and rare earth elements (REE) in dissolution of silica gel is investigated. The leaching process optimization is performed using the method of Taguchi L9 orthogonal array and the analysis of variance (ANOVA). The recovery of zirconium and REE from silica gel to pregnant solution at the optimized dissolution parameters is 47.95 and 56.17%, respectively. The ANOVA method shows that contribution of ultrasonic treatment in the recovery of zirconium and REE equals 89.6 and 59.6%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. Savel’eva, I.L., The Rare-Earth Metals Industry of Russia: Present Status, Resource Conditions of Development, Geography and Natural Resources, 2011, vol. 32, no. 1, pp. 65–71. doi.org/10.1134/ S1875372811010112.

    Article  Google Scholar 

  2. Kuleshevich, L.V. and Dmitrieva, A.V., Rare-Earth Mineralization in Alkaline and Moderately Alkaline Complexes of Karelia, Associated Metasomatites and Ores, Gornyi Zhurnal, 2019, no. 3. DOI: 10.17580/gzh.2019.03.09.

    Article  Google Scholar 

  3. Rastsvetaeva, R.K., Structural Mineralogy of the Eudialyte Group: A Review, Crystallography Reports, 2007, vol. 52, pp. 47–64.

    Article  Google Scholar 

  4. Forrester, K., Leijd, M., Oczlon, M., Holmstrom, H., and Saxon, M., Beneficiation of Rare Earth Element Enriched Eudialyte from the Norra Kärr Peralkaline Intrusion with Wet High Intensity Magnetic Separation, Conf. of Metallurgists, Canadian Institute of Mining, Metallurgy and Petroleum, Vancouver, 2014.

  5. Zakharov, V.I., Skiba, G.S., Solov’ev, A.V., Lebedev, V.N., and Mayorov, D.V., Some Aspects of Acid Processing of Eudialyte, Tsvet. Metally, 2011, no. 11, pp. 25–29.

    Google Scholar 

  6. Lebedev, V.N., Sulfuric Acid Technology of Eudialyte Concentrate, Zhurn. Prikl. Khimii, 2003, vol. 76, no. 10, pp. 1601–1605.

    Google Scholar 

  7. Lebedev, V.N., Shchur, T.E., Mayorov, D.V., Popova, L.A., and Serkova, R.P., Features of Acid Decomposition of Eudialyte and Some Rare Metal Concentrates of the Kola Peninsula, Zhurn. Prikl. Khimii, 2003, vol. 76, no. 8, pp. 1233–1237.

    Google Scholar 

  8. Zakharov, V.I., Voskoboinikov, N.B., Skiba, G.S., Solov’ev, A.V., Mayorov, D.V., and Matveev, V.A., Development of Hydrochloric Acid Technology for Complex Processing of Eudialyte, Zap. Gorn. Inst., 2005, vol. 165, pp. 83–85.

    Google Scholar 

  9. Bogatyreva, E.V., Chub, A.V., Ermilov, A.G., and Khokhlova, O.V., Efficiency of the Alkaline Acid Method for Complex Leaching of Eudialyte Concentrate. Part I, Tsvet. Metally, 2018, no. 7, pp. 57–61.

  10. Bogatyreva, E.V., Chub, A.V., Ermilov, A.G., and Khokhlova, O.V., Efficiency of the Alkaline Acid Method for Complex Leaching of Eudialyte Concentrate. Part II, Tsvet. Metally, 2018, no. 8, pp. 69–74.

  11. Ma, Y., Stopic, S., and Friedrich, B., Hydrometallurgical Treatment of an Eudialyte Concentrate for Preparation of Rare Earth Carbonate, Johnson Matthey Tech. Rev., 2019, vol. 63, pp. 2–13.

    Article  Google Scholar 

  12. Jha, M.K., Kumari, A., Panda, R., Kumar, J.R., Yoo, K., and Lee, J.Y., Review on Hydrometallurgical Recovery of Rare Earth Metals, Hydrometallurgy, 2016, vol. 165, pp. 2–26.

    Article  Google Scholar 

  13. Ma, Y., Stopic, S., Gronen, L., and Friedrich, B., Recovery of Zr, Hf, Nb from Eudialyte Residue by Sulfuric Acid Dry Digestion and Water Leaching with H2O2 as a Promoter, Hydrometallurgy, 2018, vol. 181, pp. 206–214.

    Article  Google Scholar 

  14. Ma, Y., Stopic, S., Gronen, L., Milivojevic, M., Obradovic, S., and Friedrich, B., Neural Network Modeling for the Extraction of Rare Earth Elements from Eudialyte Concentrate by Dry Digestion and Leaching, J. Metals, 2018, vol. 8, no. 4, p. 267.

    Article  Google Scholar 

  15. Johnsen, O., Ferraris, G., Gault, R., Joel, D.G., Kampf, A., and Pekov, I., The Nomenclature of Eudialyte-Group Minerals, The Canadian Mineralogist, 2003, vol. 41, pp. 785–794.

    Article  Google Scholar 

  16. Davris, P., Stopic, S., Balomenos, E., Panias, D., Paspaliaris, I., and Friedrich, B., Leaching of Rare Earth Elements from Eudialyte Concentrate by Suppressing Silica Gel Formation, J. Min. Eng., 2017, vol. 108, pp. 115–122.

    Article  Google Scholar 

  17. Vaccarezza, V. and Anderson, C., Beneficiation and Leaching Study of Norra Kärr Eudialyte Mineral, Kim, H. et al. (Eds.) Rare Metal. Techn., 2018, TMS 2018, The Minerals, Metals and Materials Series, Springer, Cham.

  18. Voßenkaul, D., Birich, A., Müller, N., Stoltz, N., and Friedrich, B., Hydrometallurgical Processing of Eudialyte Bearing Concentrates to Recover Rare Earth Elements via Low-Temperature Dry Digestion to Prevent the Silica Gel Formation, J. Sustain. Metal., 2016, vol. 3, pp. 79–89.

    Article  Google Scholar 

  19. Balinski, A., Atanasova, P., Wiche, O., Kelly, N., Reyter, A.M., and Scharf, C., Recovery of REEs, Zr(Hf), Mn and Nb by H2SO4 Leaching of Eudialyte Concentrate, Hydrometallurgy, 2019, vol. 186, pp. 176–86.

    Article  Google Scholar 

  20. Artiushenko, O., Kostenko, L., and Zaitsev, V., Influence of Competitive Eluting Agents on REEs Recovery from Silica Gel Adsorbent with Immobilized Aminodiphosphonic Acid, J. of Environmental Chemical Eng., 2020, vol. 8, no. 4, 103883, DOI: 10.1016/j.jece.2020.103883.

    Article  Google Scholar 

  21. Chanturia, V.A., Minenko, V.G., Samusev, A.L., Koporulina, E.V., and Ryazantseva, M.V., Fracture of Structured Rocks and Materials in Nonuniform Stress Fields, J. Min. Sci., 2020, vol. 56, no. 4, pp. 631–641.

    Article  Google Scholar 

  22. Taguchi, G., System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, Kraus Int. Publications, 1987.

  23. Ni’am, A.C., Wang, Y.F., Chen, S.W., and You, S.J., Recovery of Rare Earth Elements from Waste Permanent Magnet (WPMs) via Selective Leaching Using the Taguchi Method, J. of the Taiwan Institute of Chem. Eng., 2019, vol. 97, pp. 137–145.

    Article  Google Scholar 

  24. Mondal, S., Paul, B., Kumar, V., Singh, D.K., and Chakravartty, J.K., Parametric Optimization for Leaching of Cobalt from Sukinda Ore of Lateritic Origin—A Taguchi Approach, Separation and Purification Technology, 2015, vol. 156, no. 2, pp. 827–834.

    Article  Google Scholar 

  25. Srivalli, H. and Nagarajan, R., Mechanistic Study of Ultrasound Assisted Solvent Leaching of Sodium and Potassium from an Indian Coal Using Continuous and Pulsed Modes of Operation, Chem. Eng. Commun., 2019, vol. 206, no. 2, pp. 207–226.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Samusev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chanturia, V.A., Samusev, A.L., Minenko, V.G. et al. Rare Metal and Rare Earth Recovery from Silica Gel—Eudialyte Concentrate Leaching Product. J Min Sci 57, 1006–1013 (2021). https://doi.org/10.1134/S1062739121060132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121060132

Keywords

  • silica gel
  • zirconium
  • rare earth elements
  • dissolution
  • recovery
  • optimal parameters