Skip to main content

Laboratory Research of Slope Stability under Impacts


The authors discuss the lab-scale studies into sub-horizontal effect of a low-frequency seismic wave on a slope. Acceleration transducers enabled tracing relative slope sliding even in case of invisible straining. It is found that if the maximum acceleration in the momentum is below a certain value governed by the soil strength, the slope keeps stable even at high displacement velocities. A single impact at high acceleration but low mass velocity is also incapable to initiate landslide. However, in this case, residual strains arise, accumulate and can make the slope unstable. Under multiple impacts, the critical parameters are markedly lower as compared with the single impact. This is particularly true for steep slopes having small stability factors. The parameters of vibrations generated by different-magnitude earthquakes which initiate slope failures in the form of landslides are analyzed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Newmark, N.M., Effects of Earthquakes on Dams and Embankments, Geotechnique, 1965, vol. 15, no. 2, pp. 139–160.

    Article  Google Scholar 

  2. Strom, A., Lan, H., and Li, L., Rock Avalanche Mobility: Optimal Characterization and the Effects of Confinement, Landslides, 2019, vol. 16, no. 8, pp. 1437–1452.

    Article  Google Scholar 

  3. Wilson, R.C. and Keefer, D.K., Dynamic Analysis of a Slope Failure from the 6 August 1979 Coyote Lake, California, Earthquake, Bulletin of the Seismological Society of America, 1983, vol. 73, pp. 863–877.

    Article  Google Scholar 

  4. Keffer, D.K., Landslides Caused by Earthquakes, GSA Bulletin, 1984, vol. 95, no. 4, pp. 406–421.

    Article  Google Scholar 

  5. Mel’nikov, N.N., Kozyrev, A.A., and Lukichev, S.V., New Concept for Deep Open-Pit Mining of Deposits, Gornyi zhurnal, 2009, no. 11, pp. 7–11.

  6. Fisenko, G.L., Ustoichivost’ bortov kar’erov i otvalov (Pitwall and Slope Stability), Moscow: Nedra, 1965.

    Google Scholar 

  7. Yakovlev, D.V., Tsirel’, S.V., Zuev, B.Yu., and Pavlovich, A.A., Earthquake Impact on Pitwall Stability, J. Min. Sci., 2012, vol. 48, no. 4, pp. 595–608.

    Article  Google Scholar 

  8. Tsirel’, S.V. and Pavlovich, A.A., Problems and Methods for Developing Geomechanical Justification of Pitwall Parameters, Gornyi zhurnal, 2017, no. 7, pp. 39–45.

  9. Wilson, R.C. and Keefer, D.K., Predicting Areal Limits of Earthquake-Induced Landsliding. Earthquake Hazards in the Los Angeles Region—an Earth-Science Perspective, U. S. Geol. Survey Profes., Ziony, J.I. (ed.), 1985, pp. 317–345.

  10. Khramtsov, B.A., Bakaras, M.V., Kravchenko, A.S., and Korneichuk, M.A., Control of Stability of Loose Overburden Dumps in Iron-Ore Mines of the KMA, GIAB, 2018, no. 2, pp. 66–72.

  11. ODM 218.2.006-2010. Rekomendatsii po raschetu ustoichivosti opolzneopasnykh sklonov (otkosov) i opredeleniyu opolznevykh davlenii na inzhenernye sooruzheniya avtomobil’nykh dorog (ODM 218.2.006-2010. Recommendations for Calculating the Stability of Landslide-Prone Slopes and Determining Landslide Pressure on Engineering Structures of Highways), 2010.

  12. Dieterich, J.H., Modeling of Rock Friction: 1. Experimental Results and Constitutive Equations, J. Geophys. Res., 1979, vol. 84, pp. 2161–2168.

    Article  Google Scholar 

  13. Arnold, L., Seismically-Induced Rock-Slope Failure: Numerical Investigations Using the Bonded Particle Model, PhD Dissertation, University of Washington, 2016.

  14. Pavlov, D.V. and Sharafiev, Z.Z., Metodika laboratornogo issledovaniya ustoichivosti sklona pri impul’snom dinamicheskom vozdeistvii. Dinamicheskie protsessy v geosferakh (Procedure for Laboratory Research of Slope Stability under Pulsed Dynamic Impact. Dynamic Processes in Geospheres), Moscow: Geos, 2020.

    Google Scholar 

  15. Kocharyan, G.G., Besedina, A.N., Kishkina, S.B., Pavlov, D.V., Sharafiev, Z.Z., and Kamenev, P.A., Initiation of Slope Collapse by Seismic Vibrations from Different Sources, Fizika Zemli, 2021, no. 5, pp. 41–54.

  16. Sedov, L.I., Mekhanika sploshnoi sredy. Tom 1 (Continuum Mechanics. Vol. I), Moscow: Nauka, 1976.

    Google Scholar 

  17. Adushkin, V.V. and Orlenko, T.A., Strength Characteristics of Sandy Soil Decompaction during Shear, Mekhanika tverdogo tela, 1971, no. 2, pp. 167–171.

  18. RF State Standard no. 12248-2010. Soils. Methods for Laboratory Determination of Strength and Deformability Characteristics, Moscow: Standartinform, 2011.

  19. Kocharyan, G.G. and Spivak, A.A., Dinamika deformirovaniya blochnykh massivov gornykh porod (Deformation Dynamics of Blocky Rock Masses), Moscow: IKTs Akademkniga, 2003.

    Google Scholar 

  20. Bullock, Z., Dashti, S., Liel, A., Porter, K., Karimi, Z., and Bradley, B., Ground-Motion Prediction Equations for Arias Intensity, Cumulative Absolute Velocity, and Peak Incremental Ground Velocity for Rock Sites in Different Tectonic Environments, Bull. Seismol. Soc. Am., 2017, vol. 107, pp. 2293–2309.

    Article  Google Scholar 

  21. Boore, D.M., Joyner, W.B., and Fumal, D.E., Estimation of Response Spectra and Peak Accelerations from Western North America Earthquakes: An Interim Report, Open-File-Report, US Geological Survey, Reston, VA, 1993.

  22. Sabetta, F. and Pugliese, A., Estimation of Response Spectra and Simulation of Nonstationary Ground Motions, Bulletin of the Seismological Society of America, 1996, vol. 86, no. 2, pp. 337–352.

    Google Scholar 

  23. Carro M., Amicis M. De, Luzi L., and Marzorati S. The Application of Predictive Modeling Techniques to Landslides Induced by Earthquakes: The Case Study of the 26 September 1997 Umbria—Marche Earthquake (Italy), Eng. Geol., 2003, vol. 69, pp 139–159.

    Article  Google Scholar 

  24. Jibson, R.W., Rathje, E.M., Jibson, M.W., and Lee, Y.W., SLAMMER—Seismic Landslide Movement Modeled Using Earthquake Records, U. S., Geological Survey Techniques and Methods, 2013.

  25. Erteleva, O.O., Response Spectra in Velocities: Estimates of Parameters and Shape, Voprosy inzhenernoi seismologii, 2015., vol. 42, no. 4, pp. 5–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to G. G. Kocharyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kocharyan, G.G., Kishkina, S.B. & Sharafiev, Z.Z. Laboratory Research of Slope Stability under Impacts. J Min Sci 57, 965–977 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • slope processes
  • landslides
  • slope failure
  • multiple impacts
  • seismic vibrations
  • earthquakes
  • blasts