Skip to main content
Log in

Modeling Air Flow–Lining Heat Transfer in the Conditions of Mixed Convection in a Mine Shaft

  • MINING THERMOPHYSICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The air flow dynamics in a vertical mine shaft under conditions of mixed convection is theoretically studied using 3D modeling in ANSYS. The average heat-transfer coefficients are obtained at the air–lining interface depending on air–lining temperature difference and on the average air flow velocity. The threshold velocities of air flow are determined at various air–lining temperature differences. At the air flow velocities higher than the threshold, the engineering designs can neglect the influence of the heat–gravitational forces and use the formula of heat transfer in induced convection. When the air velocity is lower than the threshold, the heat-transfer coefficient should be adjusted with respects to the natural convection effect. The authors offer an empirical formula for calculating the average dimensionless heat transfer coefficient in case of prevailing natural convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Yakovenko, A.K., Methods for Predicting and Normalizing Thermal Conditions in High-Performance Longwalls of Deep Coal Mines, Cand. Tech. Sci. Thesis, Makeevka-Donbass: MakNII, 1985.

  2. Dyad’kin, Yu.D., Osnovy gornoy teplofiziki dlya shakht i rudnikov Severa (Fundamentals of Mining Thermophysics for Mines of the North), Moscow: Nedra, 1968.

    Google Scholar 

  3. Sherratt, A.F., Temperatures around a Cooled Mine Roadway, Coll. Eng., 1964, no. 2, pp. 221–225.

  4. Krasovitskii, B.A. and Popov, F.S., Temperature Regime of Mine Workings, IFZh, 1976, vol. 31, no. 2, pp. 339–346.

    Google Scholar 

  5. Krasovitskiy, B.A., Popov, F.S., and Kapitonova, T.A., Determination of the Optimal Thickness of Thermal Insulation along the Length of a Mine Working, Proc. of Int. Symp. Gradient-77, Kiev: Naukova dumka, 1977.

  6. Zhuravlenko, V.Ya., Shelimanov, V.A., Kozlov, E.N., and Mukoed, N.I., Methods for Calculating the Parameters of Mine Air in Longwall and their Comparison, DAN USSR, Series A, 1979, no. 10, pp. 859–862.

  7. Kozdoba, L.A. and Chernyak, V.P., Physical Characteristics and Mathematical Description of the Rock Mass-Production System in Connection with the Problem of Predicting and Adjusting the Thermal Regime of Deep and Metalliferous Mines, Proc. of Int. Symp. Gradient-77, Kiev: Naukova dumka, 1977.

  8. Chernyak, V.P., Kireev, V.A., and Polubninskiy, A.S., Nestatsionarnyy teplomassoperenos v razrushayemykh massivakh gornykh porod (Unsteady Heat and Mass Transfer in Disintegrated Rock Masses), Kiev: Naukova dumka, 1992.

    Google Scholar 

  9. Krasyuk, A.M., Lugin, I.V., and P’yankova, A.Yu., Dileniation of Soil Body Area Exposed to Thermal Effect of Subway Stations and Tunnels, Journal of Mining Science, 2015, vol. 51, no. 1, pp. 138–143.

    Article  Google Scholar 

  10. Braicheva, N.A., Chernyak, V.P., and Shcherban’, A.N., Metody rascheta temperatury ventilyatsionnogo vozdukha podzemnykh sooruzhenii (Methods for Calculating the Temperature of Ventilation Air in Underground Structures), Kiev: Naukova dumka, 1981.

    Google Scholar 

  11. Chernyak, V.P., Teplovye raschety podzemnykh sooruzhenii (Thermal Calculations of Underground Structures), Kiev: Naukova dumka, 1993.

    Google Scholar 

  12. Kozdoba, L.A. and Chernyak, V.P., Physical Characteristics and Mathematical Description of the Rock Mass-Production System in Connection with the Problem of Predicting and Adjusting the Thermal Regime of Deep and Metalliferous Mines, Proc. of Int. Symp. Gradient-77, Kiev: Naukova dumka, 1977.

  13. Shcherban’, A.N. and Kremnev, O.A., Nauchnye osnovy rascheta i regulirovaniya teplovogo rezhima glubokikh shakht: v 2 t. (Scientific Basis for Calculating and Adjusting the Thermal Regime of Deep Mines: in Two Volumes. Volume I), Kiev: AN USSR, 1959.

    Google Scholar 

  14. Kremnev, O.A. and Zhuravlenko, V.Ya., Teplo- i massoobmen v gornom massive i podzemnykh sooruzheniyakh (Heat and Mass Transfer in the Rock Mass and Underground Structures), Kiev: Naukova dumka, 1986.

    Google Scholar 

  15. Burtsev, A.N. and Postol’nik, Yu.S., Analytical Study of Heat Exchange between an Infinite Rock Mass and Cylindrical Cavity with Unsteady Temperature of the Medium, Gornyi Zhurnal, 1978, no. 9, pp. 63–67.

  16. Gendler, S.G., Method for Determining Heat Transfer Coefficient in Mine Workings, Promyshlennaya teplotekhnika, 1986, vol. 8, no. 3, pp. 44–47.

    Google Scholar 

  17. Braicheva, N.A., Dobryanskiy, Yu.P., and Shcherban’, A.N., Formulation of Problems on Thermal Conditions of Heat Transfer Agent Moving in a Mine Working, Promyshlennaya teplotekhnika, 1986, vol. 8, no. 1, pp. 19–22.

    Google Scholar 

  18. Voropaev, A.F., Teoriya teploobmena rudnichnogo vozdukha i gornykh porod v glubokikh shakhtakh (Theory of Heat Exchange between Mine Air and Rocks in Deep Mines), Moscow: Nedra, 1966.

    Google Scholar 

  19. Shalimov, A.V., Theoretical Foundations of Predicting, Preventing and Protecting from Emergency Disruptions in Mine Ventilation, Doc. Tech. Sci. Thesis, Perm, 2012.

  20. Vengerov, I.R., Teplofizika shakht i rudnikov. Matematicheskie modeli. T. 1. Analiz paradigm (Thermophysics of Mines. Mathematical Models. Vol. 1. Analysis of the Paradigm), Donetsk: Nord Press, 2008.

    Google Scholar 

  21. Levin, L.Yu., Semin, M.A., and Zaitsev, A.V., Mathematical Methods of Forecasting Microclimate Conditions in an Arbitrary Layout Network of Underground Excavations, Journal of Mining Science, 2014, vol. 50, no. 2, pp. 371–378.

    Article  Google Scholar 

  22. Kazakov, B.P., Shalimov, A.V., and Kiryakov, A.S., Energy-Saving Mine Ventilation, Journal of Mining Science, 2013, vol. 49, no. 3, pp. 475–481.

    Article  Google Scholar 

  23. Kolesov, E.V., Kazakov, B.P., and Grishin, E.L., Study of the Convective Stratification of Airflows in a Mine Shaft, J. Physics: Conf. Series, 2021, vol. 1945, 012020.

  24. Petukhov, B.S., Polyakov, A.F., and Shekhter, Yu.L., Turbulent Flow and Heat Exchange in a Gravity Field, TVT, 1978, vol. 16, no. 3, pp. 624–639.

    Google Scholar 

  25. Petukhov, B.S. and Medvetskaya, N.V., Turbulent Flow and Heat Exchange in Vertical Pipes under Strong Influence of Lifting Forces, TVT, 1978, vol. 16, no. 4, pp. 778–786.

    Google Scholar 

  26. Petukhov, B.S., Voprosy teploobmena: Izbrannye trudy (Problems of Heat Exchange: Selected Works), Moscow: Nauka, 1987.

    Google Scholar 

  27. Petukhov, B.S. and Polyakov, A.F., Teploobmen pri smeshannoy turbulentnoy konvektsii (Heat Exchange in Mixed Turbulent Convection), Moscow: Nauka, 1986.

    Google Scholar 

  28. Martynenko, A.G. et al. (eds.), Spravochnik po teploobmennikam: v 2 t. T. 1 (Handbook on Heat Exchangers: in 2 Volumes. Volume I), Moscow: Energoatomizdat, 1987.

    Google Scholar 

  29. Kazakov, B.P., Shalimov, A.V., and Semin, M.A., Stability of Natural Ventilation Mode after Main Fan Stoppage, Int. J. Heat and Mass Transfer, 2015, vol. 86, pp. 288–293.

    Article  Google Scholar 

  30. Polyakov, A.F., Boundaries and Character of Heat-Gravitational Force Influence of Turbulent Flow and Heat Exchange in Vertical Pipes, TVT, 1973, vol. 11, no. 1, pp. 106–116.

    Google Scholar 

  31. Semin, M.A. and Levin, L.Yu., Theoretical Research of Heat Exchange between Air Flow and Shaft Lining subject to Convective Heat Transfer, GIAB, 2020, vol. 6, pp. 151–167.

    Article  Google Scholar 

  32. Volkov, K.N. and Emelyanov, V.N., Modelirovaniye krupnykh vikhrei v raschetakh turbulentnykh techenii (Modeling Large Eddies in Turbulent Flow Calculations), Moscow: Fizmatlit, 2008.

    Google Scholar 

  33. Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi (Basics of Heat Transfer), Moscow: Energiya, 1077.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kolesov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 5, pp. 160-171. https://doi.org/10.15372/FTPRPI20210515.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesov, E.V., Kazakov, B.P. & Semin, M.A. Modeling Air Flow–Lining Heat Transfer in the Conditions of Mixed Convection in a Mine Shaft. J Min Sci 57, 852–862 (2021). https://doi.org/10.1134/S106273912105015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106273912105015X

Keywords

Navigation