Skip to main content
Log in

Excitation of Seismic Vibrations in Fractures by Water Flow and Determination of the Flow Parameters Using the Seismic Radiation Patterns

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors discuss the numerical and field research findings on seismic radiation of water flow in a fracture. The flow parameters can be remotely controlled using the amplitude-versus-frequency response of the vibrations recorded. It is recommended to include the infra-low frequency control in the seismic monitoring in hydrodynamically hazardous mines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Gornaya entsiklopediya. Podzemnye vody (Mining Encyclopedia. Grounwater), Moscow: Sov. Entsikl., 1989, vol. 4.

  2. Looking into the Gap: What is Going On at Uralkali’s Disaster Site. URL: http://www.rbc.ru/ business/24/11/2014/5472f367cbb20f47fd664aa1 (last visited: 6 June 2021).

  3. Subbotin, A.I., Gritskov, V.V., Kozachenko, M.G., and Konyakhina, O.A., Guidelines on Safe Mining nearby Flooded Roadways, Okhrana nedr i geologo-marksheiderskii kontrol’: sb. dokumentov (Subsoil Protection and Geological Surveying Supervision: Collected Documents), Moscow: ZAO NTS PB, 2010.

  4. Odintsev, V.N. and Militenko, N.A., Water Inrush in Mines as a Consequence of Spontaneous Hydrofracture, Journal of Mining Science, 2015, vol. 51, no. 3, pp. 423–434.

    Article  Google Scholar 

  5. Kulikova, E.Yu., Pre-Signs of Surface Water and Groundwater Inrushes in Mines, GIAB, 1996, no. 6, pp. 109–113.

  6. Marfin, E.A., Skvazhinnaya shumometriya i vibroakusticheskoe vozdeistvie na flyuidonasyshchennye plasty: ucheb.-metodich. posob. (Downhole Noise Metering and Vibro-Acoustic Effect on Fluid-Saturated Seams: Teaching Aid), Kazakn: KFU, 2012.

    Google Scholar 

  7. Aki, K., Fehler, M., and Das, S., Source Mechanism of Volcanic Tremor: Fluid-Driven Crack Models and Their Application to the 1963 Kilauea Eruption, J. Volcanology and Geothermal Rese., 1977, vol. 2, no. 3, pp. 259–287.

    Article  Google Scholar 

  8. Chouet, B., Dynamics of a Fluid-Driven Crack in Three Dimensions by the Finite Difference Method, J. Geophys. Res.: Solid Earth, 1986, vol. 91, no. B14, pp. 13967–13992.

    Article  Google Scholar 

  9. Balmforth, N.J., Craster, R.V., and Rust, A.C., Instability in Flow through Elastic Conduits and Volcanic Tremor, J. Fluid Mech., 2005, vol. 527, pp. 353–377.

    Article  Google Scholar 

  10. Julian, B.R., Volcanic Tremor: Nonlinear Excitation by Fluid Flow, J. Geophys. Res.: Solid Earth, 1994, vol. 99, no. B6, pp. 11859–11877.

    Article  Google Scholar 

  11. Corona-Romero, P., Arciniega-Ceballos, A., and Sánchez-Sesma, F.J., Simulation of LP Seismic Signals Modeling the Fluid–Rock Dynamic Interaction, J. Volcanology and Geothermal Res., 2012, vol. 211, pp. 92–111.

    Article  Google Scholar 

  12. Winberry, J.P., Anandakrishnan, S., and Alley, R.B., Seismic Observations of Transient Subglacial Water-Flow beneath Macayeal Ice Stream, West Antarctica, Geophys. Res. Let., 2009, vol. 36, L11502.

    Article  Google Scholar 

  13. Lawrence, W.S.T. and Qamar, A., Hydraulic Transients: A Seismic Source in Volcanoes And Glaciers, Sci., 1979, vol. 203, no. 4381, pp. 654–656.

    Article  Google Scholar 

  14. Röösli, C., Walter, F., Husen, S., Andrews, L., Lüthi, M., Catania, G. and Kissling, E., Sustained Seismic Tremors and Ice Quakes Detected in the Ablation Zone of the Greenland Ice Sheet, J. Glaciology, 2014, vol. 60, no 221, pp. 563–575.

    Article  Google Scholar 

  15. Potter, R.M. and Dennis, B.R., Seismic and Fluid Pressure Response from a Series of Hydraulic Fractures in Granite, Transactions-American Geophys. Union, 1974, vol. 55, no. 4, pp. 430–430.

    Google Scholar 

  16. Tary, J.B., Baan, M., and Eaton, D.W., Interpretation of Resonance Frequencies Recorded during Hydraulic Fracturing Treatments, J. Geophys. Res.: Solid Earth, 2014, vol. 119, no. 2, pp. 1295–1315.

    Article  Google Scholar 

  17. Das, I. and Zoback, M.D. Long-Period, Long-Duration Seismic Events during Hydraulic Stimulation of Shale and Tight-Gas Reservoirs. Part 1: Waveform Characteristics, Geophysics, 2013, vol. 78, no. 6, pp. KS97–KS108.

  18. Das, I. and Zoback, M.D., Long-Period, Long-Duration Seismic Events during Hydraulic Fracture Stimulation of a Shale Gas Reservoir, The Leading Edge, 2011, vol. 30, no. 7, pp. 778–786.

  19. Eaton, D., Baan, M., Tary, J., Birkelo, B., Spriggs, N., Cutten, S. and Pike, K., Broadband Microseismic Observations from a Montney Hydraulic Fracture Treatment, Northeastern BC, Canada, CSEG Recorder, 2013, vol. 38, no. 3, pp. 44–53.

  20. Serdyukov, S.V., Kurlenya, M.V., Patutin, A.V., Rybalkin, L.A., and Shilova, T.V., Experimental Testing of Directional Hydraulic Fracturing Technique, Journal of Mining Science, 2016, vol. 52, no. 4, pp. 615–622.

    Article  Google Scholar 

  21. Chouet, B. and Julian, B.R., Dynamics of an Expanding Fluid-Filled Crack, J. Geophys. Res.: Solid Earth, 1985, vol. 90, no. B13, pp. 11187–11198.

    Article  Google Scholar 

  22. Yamamoto, M. and Kawakatsu, H., An Efficient Method to Compute the Dynamic Response of a Fluid-Filled Crack, Geophys. J. Int., 2008, vol. 174, no. 3, pp. 1174–1186.

    Article  Google Scholar 

  23. Frehner, M. and Schmalholz, S.M., Finite-Element Simulations of Stoneley Guided-Wave Reflection and Scattering at the Tips of Fluid-Filled Fractures, Geophysics, 2010, vol. 75, no. 2, pp. T23–T36.

    Article  Google Scholar 

  24. Balmforth, N.J., Craster, R.V., and Rust, A.C., Instability in Flow through Elastic Conduits and Volcanic Tremor, J. Fluid Mech., 2005, vol. 527, pp. 353–377.

    Article  Google Scholar 

  25. Rust, A., Flow-Induced Oscillations: A Source Mechanism for Volcanic Tremor? Course Lectures: Conceptual models of the climate 2003. Program of Study: Non-Newtonian Geophys. Fluid Dynamics, Woods Hole Oceanog. Inst. Tech. Rept., WHOI-2004-03, 2004, pp. 113–132.

  26. Chichinin, I.S., Vibratsionne izluchenie seismicheskikh voln (Vibrational Emission of Seismic Waves), Moscow: Nedra, 1984.

    Google Scholar 

  27. Borodachev, N.M., Dynamic Contact Problem of Die Block with Flat Round Bottom on Elastic Half-Space, Izv. AN SSSR. Mekh. Mash., 1964, no. 2, pp. 82–90.

  28. Azarov, A.V., Serdyukov, S.V., and Chechurova, R.D., Excitation of Seismic Waves under Fluid Flow in Cracks in Rock Mass, J. Fundament. Appl. Min. Sci., 2017, vol. 4, no. 3, pp. 5–10.

    Google Scholar 

  29. Aki, K. and Richards, P. Quantitative Seismology, 2nd Ed., Lamont-Doherty Earth Observatory of Columbia University, 2002.

  30. Serdyukov, S.V., Azarov, A.V., Dergach, P.A., and Duchkov, A.A., Equipment for Microseismic Monitoring of Geodynamic Processes in Underground Hard Mineral Mining, Journal of Mining Science, 2015, vol. 51, no. 3, pp 634–640.

    Article  Google Scholar 

  31. Kurlenya, M.V., Serdyukov, S.V., Azarov, A.V., and Nikitin, A.A., Numerical Modeling of Wavefields in Microseismic Events in Underground Mining, Journal of Mining Science, 2015, vol. 51, no. 4, pp. 689–695.

    Article  Google Scholar 

  32. Loginov, G.N., Yaskevich, S.V., Duchkov, A.A., and Serdyukov, S.V., Joint Processing of Surface and Underground Microseismic Monitoring Data in Hard Mineral Mining, Journal of Mining Science, 2015, vol. 51, no. 5, pp. 944–950.

    Article  Google Scholar 

  33. Azarov, A.V., Serdyukov, A.S., and Gapeev, D.N., Frequency Domain Orthogonal Projection Filtration of Surface Microseismic Monitoring Data, Geophys. Prosp., 2020, vol. 68, pp. 382–392.

    Article  Google Scholar 

  34. Serdyukov, A.S., Yablokov, A.V., Duchkov, A.A., Azarov, A.A., and Baranov, V.D., Slant F–K Transform of Multichannel Seismic Surface Wave Data, Geophysics, 2019, vol. 84, no. 1, pp. A19–A24.

    Article  Google Scholar 

  35. Serdykov, S.V., Experimental Validation of Vibro-Seismic Oil Recovery Technology, Dr Eng Disseration Synopsys, Novosibirsk: IGD SO RAN, 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Azarov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 5, pp. 22-34. https://doi.org/10.15372/FTPRPI20210503.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serdyukov, S.V., Azarov, A.V. Excitation of Seismic Vibrations in Fractures by Water Flow and Determination of the Flow Parameters Using the Seismic Radiation Patterns. J Min Sci 57, 728–739 (2021). https://doi.org/10.1134/S1062739121050033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121050033

Keywords

Navigation