Skip to main content
Log in

The Enhancement of Mine Waste Stability Using Biocementation

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

There are large amounts of waste deposits around mines and mineral processing plants, and their instability is one of the major concerns in mining industries. One of the methods to amend the waste deposit stability is the strength enhancement. Biocement is a method for improvement of the ground using microorganisms to precipitate calcium carbonate between geomaterial particles. For this process, Sporosarcina pasteurii bacteria is used to activate the calcite precipitation to increase the strength of Angouran mine waste. In this research, the effect of biocementation on increasing the strength of waste is investigated. The results of laboratory tests show that wave velocity and uniaxial compressive strength were considerably increased with number of injections. Also, the compressive strength of samples under initial load is increased in comparison to unloading modes. Therefore, utilizing the proposed method promotes the mine waste stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. Anbu, P., Kang, C.H., Shin, Y., and So, J.S., Formations of Calcium Carbonate Minerals by Bacteria and Its Multiple Applications, Springerplus, 2016, vol. 5, p. 250.

    Article  Google Scholar 

  2. Perez-Marin, A.B., Ballester, A., Gonzalez, F., Blazquez, M.L., Munoz, J.A., Saez, J., and Meseguer Zapata, V., Study of Cadmium, Zinc, and Lead Biosorption by Orange Wastes Using the Subsequent Addition Method, Bioresour. Technol, 2008, vol. 99, pp. 8101–8106.

    Article  Google Scholar 

  3. Guo, H., Luo, S., Chen, L., Xiao, X., Xi, Q., Wei, W., Zeng, G., Liu, C., Wan, Y., Chen, J., and He, Y., Bioremediation of Heavy Metals by Growing Hyperaccumulator Endophytic Bacterium Bacillus Sp. L14, Bioresour. Technol., 2010, vol. 101, pp. 8599–8605.

    Article  Google Scholar 

  4. Fu, F. and Wang, Q., Removal of Heavy Metal Ions from Wastewaters: A Review, J. Environ. Manage., 2011, vol. 92, pp. 407–418.

    Article  Google Scholar 

  5. Li, M., Cheng, X., and Guo, H., Heavy Metal Removal by Biomineralization of Urease Producing Bacteria Isolated from Soil, Int. Biodeterior. Biodegrad., 2013, vol. 76, pp. 81–85.

    Article  Google Scholar 

  6. Ivanov, V. and Stabnikov, V., Construction Biotechnology, Green Energy and Technology, Springer Nature, 2017.

  7. Stabnikov, V., Chu, J., Ivanov, V., and Li, Y., Halotolerant, Alkaliphilic Urease-Producing Bacteria from Different Climate Zones and their Application for Biocementation of Sand, World J. Microbiol. Biotechnol, 2013, vol. 29, pp. 1453–1460.

    Article  Google Scholar 

  8. Khodadadi, H. and Bilsel, H., Application of Microorganisms for Improvement of Liquefiable Sand, Int. Conf. on New Developments in Soil Mechanics and Geotechnical Engineering, Nicosia, North Cyprus, 2012.

  9. Basha, E.A., Hashim, R., Mahmud, H.B., and Muntohar, A.S., Stabilization of Residual Soil with Rice Husk Ash and Cement, Constr. Build. Mater., 2005, vol. 19, pp. 448–453.

    Article  Google Scholar 

  10. DeJong, J., Mortensen, B.M., Martinez, B.C., and Nelson, D.C., Bio-Mediated Soil Improvement, Ecol. Eng, 2010, vol. 3, pp. 197–210.

    Article  Google Scholar 

  11. Ivanov, V. and Chu, J., Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ, Rev. Environ. Sci. Biotechnol., 2008, vol. 7, pp. 139–153.

    Article  Google Scholar 

  12. Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N., and Shen, D., Review of Ground Improvement Using Microbial Induced Carbonate Precipitation (MICP), Marine Georesources and Geotechnology, 2017, vol. 35, pp. 1135–1146.

    Article  Google Scholar 

  13. DeJong, J., Fritzges, M., and Nusslein, K., Microbially Induced Cementation to Control Sand Response to Undrained Shear, J. Geotech. Geoenviron. Eng., 2006, vol. 32, pp. 1381–1392.

    Article  Google Scholar 

  14. Sotoudehfar, A.R., Sadeghi, M.M., Mokhtari, E., and Shafiei, F., Assessment of the Parameters Influencing Microbial Calcite Precipitation in Injection Experiments Using Taguchi Methodology, Geomicrobiol. J, 2016, vol. 33, no. 2, pp. 163–172.

    Article  Google Scholar 

  15. Martinez, B.C., DeJong, J.T., and Ginn, T.R., Bio-Geochemical Reactive Transport Modeling of Microbial Induced Calcite Precipitation to Predict the Treatment of Sand in One-Dimensional Flow, Comput. Geotech., 2014, vol. 58, pp. 1–13.

    Article  Google Scholar 

  16. Whiffin, V.S., Van Paassen, L., and Harkes, M.P., Microbial Carbonate Precipitation as a Soil Improvement Technique, Geomicrobiol. J, 2007, vol. 24, pp. 417–423.

    Article  Google Scholar 

  17. Lian, J., Xu, H., He, X., Yan, Y., Fu, D., Yan, S., and Qi, H., Biogrouting of Hydraulic Fill Fine Sands for Reclamation Projects, Marine Georesources and Geotechnology, 2018, vol. 37, pp. 1–11.

    Google Scholar 

  18. Seifan, M., Khajeh Samani, A., and Berenjian, A., Bioconcrete: Next Generation of Self-Healing Concrete, Applied Microbiology and Biotechnology 2016, vol. 100, pp. 2591–2602.

    Article  Google Scholar 

  19. De Muynck, W., De Belie, N., and Verstraete, W., Microbial Carbonate Precipitation in Construction Materials: A Review, Ecol. Eng, 2010, vol. 36, pp. 118–136.

    Article  Google Scholar 

  20. Al-Salloum, Y., Hadi, S., Abbas, H., Almusallam, T., and Moslem, M.A., Bio-Induction and Bioremediation of Cementitious Composites Using Microbial Mineral Precipitation: A Review, Construction and Building Materials, 2017, vol. 154, pp. 857–876.

    Article  Google Scholar 

  21. Paassen, L., Ghose, R., Linden, T., Star, W., and Loosdrecht, M., Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment, J. Geotech. Geoenviron. Eng., 2010, vol. 136, pp. 1721–1728.

    Article  Google Scholar 

  22. Bernardi, D., DeJong, J.T., Montoya, B.M., and Martinez, B.C., Bio-Bricks: Biologically Cemented Sandstone Bricks, Construction and Building Materials, 2014, vol. 55, pp. 462–469.

    Article  Google Scholar 

  23. Stabnikov, V., Ivanov, V., and Chu, J., Construction Biotechnology: A New Era of Biotechnological Research and Applications, World J. Microbiol. Biotechnol, 2015, vol. 31, pp. 1303–1314.

    Article  Google Scholar 

  24. Chu, J., Ivanov, V., Naeimi, M., Stabnikov, V., and Liu, H.L., Optimization of Calcium-Based Bioclogging and Biocementation of Sand, Acta Geotech., 2014, vol. 9, pp. 277–285.

    Article  Google Scholar 

  25. Cuthbert, M.O., McMillan, L.A., Handley-Sidhu, S., Riley, M.S., Tobler, D.J., and Phoenix, V.R., A Field and Modeling Study of Fractured Rock Permeability Reduction Using Microbially Induced Calcite Precipitation, Environ. Sci. Technol, 2013, vol. 47, pp. 13637–13643.

    Article  Google Scholar 

  26. Ivanov, V., Chu, J., and Stabnikov, V., Basics of Construction Microbial Biotechnology, Biotechnologies Biomimetics Civil Engineering, Springer, 2015, pp. 21–5.

  27. Yang, Y., Chu, J., Xiao, Y., Liu, H., and Cheng, L., Seepage Control in Sand Using Bioslurry, Construction and Building Materials, 2019, vol. 212, pp. 342–349.

    Article  Google Scholar 

  28. Salifu, E., MacLachlan, E., Iyer, K.R., Knapp, W.C., and Tarantino, A., Application of Microbially Induced Calcite Precipitation in Erosion Mitigation and Stabilization of Sandy Soil Foreshore Slopes: A Preliminary Investigation, Eng. Geology, 2016, vol. 201, pp. 96–105.

    Article  Google Scholar 

  29. DeJong J. T., Soga K., Kavazanjian E., Burns S., Van Paassen, L., Al Qabany, A., et al., Biogeochemical Processes and Geotechnical Applications: Progress, Opportunities and Challenges, Geotechnique, 2013, vol. 63, pp. 287–301.

    Article  Google Scholar 

  30. Grabiec, A.M., Starzyk, J., Stefaniak, K., Wierzbicki, J., and Zawal, D., On Possibility of Improvement of Compacted Silty Soils Using Biodeposition Method, Construction and Building Materials, 2017, vol. 138, pp. 134–140.

    Article  Google Scholar 

  31. Phillips, A., Troyer, E., Hiebert, R., Kirkland, C., Gerlach, R., Cunningham, A.B., Spangler, L., Kirksey, J., Rowe, W., and Esposito, R., Enhancing Wellbore Cement Integrity with Microbially Induced Calcite Precipitation (MICP): A Field Scale Demonstration, J. Pet. Sci. Eng., 2018, vol. 171, pp. 1141–1148.

    Article  Google Scholar 

  32. Mitchell, C.A. and Ferris, F.G., Effect of Strontium Contaminants upon the Size and Solubility of Calcite Crystals Precipitated by the Bacterial Hydrolysis of Urea, Environ. Sci. Technol, 2006, vol. 40, pp. 1008–1014.

    Article  Google Scholar 

  33. Achal, V., Mukherjee, A., Basu, P.C., and Reddy, M.S., Strain Improvement of Sporosarcina Pasteurii for Enhanced Urease and Calcite Production, J. Ind. Microbiol. Biotechnol, 2009, vol. 36, pp. 981–988.

    Article  Google Scholar 

  34. Tobler, D.J., Cuthbert, M.O., Greswell, R.B., Riley, M.S., Renshaw, J.C., Handley-Sidhu, S., and Phoenix, V., Comparison of Rates of Ureolysis between Sporosarcina Pasteurii and an Indigenous Groundwater Community under Conditions Required to Precipitate Large Volumes of Calcite, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 3290–3301.

    Article  Google Scholar 

  35. Cuthbert, M.O., Riley, M.S., Handley-Sidhu, S., Renshaw, J.C., Tobler, D.J., Phoenix, V., and Mackay, R., Controls on the Rate of Ureolysis and the Morphology of Carbonate Precipitated by S. Pasteurii Biofilms and Limits due to Bacterial Encapsulation, Ecol. Eng., 2012, vol. 41, pp. 32–40.

    Article  Google Scholar 

  36. Al Qabany, A.A., Soga, K., and Santamarina, C., Factors Affecting Efficiency of Microbially Induced Calcite Precipitation, J. Geotech. Geoenviron. Eng., 2012, vol. 138, pp. 992–1001.

    Article  Google Scholar 

  37. Gorospe, C.M., Han, S.H., Kim, S.G., Park, J.Y., Kang, C.H., Jeong, J.H., and So, J.S., Effects of Different Calcium Salts on Calcium Carbonate Crystal Formation by Sporosarcina PasteuriiKCTC 3558, Biotechnol. Bioproc. Eng., 2013, vol. 18, pp. 903–908.

    Article  Google Scholar 

  38. Sharma, A. and Ramkrishnan, R., Study on Effect of Microbial Induced Calcite Precipitates on Strength of Fine Grained Soils, Perspectives Sci., 2016, vol. 8, pp. 198–202.

    Article  Google Scholar 

  39. Cardoso, R., Pires, I., Duarte, S., and Monteiro, G., Effects of Clay’s Chemical Interactions on Biocementation, Applied Clay Sci., 2018, vol. 156, pp. 96–103.

    Article  Google Scholar 

  40. Malkowski, P. and Ostrowski, L., The Methodology for the Young Modulus Derivation for Rocks and its Value, Symposium of the International Society for Rock Mechanics, Procedia Eng., 2017, vol. 191, pp. 134–141.

    Google Scholar 

  41. Santi, P., Holschen, J., and Stephenson, R., Improving Elastic Modulus Measurements for Rock Based on Geology, Environmental Eng. Geoscience, 2000, vol. 6, pp. 333–346.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheyda Parvizi, Ramin Doostmohammadi or Foruzan Ghasemian Roodsari.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 4, pp. 24-35. https://doi.org/10.15372/FTPRPI20210403.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvizi, S., Doostmohammadi, R. & Roodsari, F.G. The Enhancement of Mine Waste Stability Using Biocementation. J Min Sci 57, 557–568 (2021). https://doi.org/10.1134/S1062739121040037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121040037

Keywords

Navigation