Skip to main content
Log in

Studies of Properties and Composition of Loparite Ore Mill Tailings

  • MINING ECOLOGY AND SUBSOIL MANAGEMENT
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors study the engineering geological characteristics and material constitution of loparite ore mill tailings in the active disposal area and in the dump decommissioned more than 30 years ago. The material constitutions and the contents of valuable components are nonunform in the test tailings. The content of light rare earth elements in fine fraction (–0.071 mm) is 1.5–2 times higher than in the composite sample. Based on the calculated effective specific activity of natural radionuclides 226Ra, 232Th and 40K, the composite sample and the tailings fines belong in waste categories I and II, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Doklad o sostoyanii i ob okhrane okruzhayushchei sredy Murmanskoi oblasti v 2018 g (Report on the Conditions and Environmental Protection of the Murmansk Region in 2018, Ministry of Natural Resources and Ecology of the Murmansk Region, 2019). Available at: https://gov–murman.ru/ region/environmentstate.

  2. Lottermoser, B.G., Recycling, Reuse and Rehabilitation of Mine Wastes, Elements, 2011, vol. 7, no. 6, pp. 405–410.

    Article  Google Scholar 

  3. Lèbre, É. and Corder, G., Integrating Industrial Ecology Thinking into the Management of Mining Waste, Resources, 2015, vol. 4, pp. 765–786.

    Article  Google Scholar 

  4. Lèbre, É., Corder, G.D., and Golev, A., Sustainable Practices in the Management of Mining Waste: A Focus on the Mineral Resource, Miner. Eng., 2017, vol. 107, pp. 34–42.

    Article  Google Scholar 

  5. Mesyats, S.P. and Ostapenko, S.P., Methodological Approach to Assessing the Intensity of Chemical Weathering of Mineral Raw Materials from Technogenic Deposits, Vestn. MGTU, 2013, vol. 16, no. 3, pp. 566–572.

    Google Scholar 

  6. Edahbi, M., Plante, B., and Benzaazoua, M., Environmental Challenges and Identification of the Knowledge Gaps Associated with REE Mine Wastes Management, J. Cleaner Production, 2019, no. 212, pp. 1232–1241. DOI: 10.1016/j.jclepro.2018.11.228.

    Article  Google Scholar 

  7. Ali, S., Social and Environmental Impact of the Rare Earth Industries, Resources, 2014, no. 3(1), pp. 123–134. DOI: 10.3390/resources3010123.

    Article  Google Scholar 

  8. Hu, Z., Haneklaus, S., Sparovek, G., and Schnug, E., Rare Earth Elements in Soils, Communications in Soil Sci. and Plant Analysis, 2006, vol. 37, nos. 9–10, pp. 1381–1420. DOI: 10.1080/ 00103620600628680.

    Article  Google Scholar 

  9. Tang, H., Wang, X., Shuai, W., and Liu, Y., Immobilization of Rare Earth Elements of the Mine Tailings Using Phosphates and Lime, Procedia Environmental Sci., 2016, no. 31, pp. 255–263. DOI: 10.1016/ j.proenv.2016.02.034.

    Article  Google Scholar 

  10. Charalampides, G., Vatalis, K., Karayannis, V., and Baklavaridis, A., Environmental Defects and Economic Impact on Global Market of Rare Earth Metals, IOP Conf. Series: Mater. Sci. and Eng., 2016, no. 161, p. 012069. DOI: 10.1088/1757–899X/161/1/012069.

  11. Svetlov, A.V., Pripachkin, P.V., Masloboev, V.A., and Makarov, D.V., Classification of Low-Grade Copper-Nickel Ore and Mining Waste by Ecological Hazard and Hydrometallurgical Processability, J. Min. Sci., 2020, vol. 56, no. 2, pp. 275-282. DOI: 10.15372/FTPRPI202002015.

  12. Masloboev, V.A., Seleznev, S.G., Makarov, D.V., and Svetlov, A.V., Assessment of Eco-Hazard of Copper-Nickel Ore Mining and Processing Waste, J. Min. Sci., 2014, vol. 50, no. 3, pp. 559–572.

    Article  Google Scholar 

  13. Masloboev, V.A., Baklanov, A.A., and Amosov, P.V., Results of Assessing the Dusting Intensity at Tailing Dumps, Vestn. MGTU, 2016, vol. 19, no. 1, pp. 13–19. DOI: 10.21443/1560–9278–2016–1/1–13–19.

    Article  Google Scholar 

  14. Li, S.J., Dou, S., Wang, L.M., and Liu, Z.S., Geochemical Characteristics of Rare Earth Elements on Sunflower Growing Area in the West of Jilin Province, J. Environ. Sci., China, 2011, no. 32(7), pp. 2081–2086.

  15. Thomas, P.J., Carpenter, D., Boutin, C., and Allison, J.E., Rare Earth Elements (REEs): Effects on Germination and Growth of Selected Crop and Native Plant Species, Chemosphere, 2014, vol. 96, no. 2, pp. 57–66.

    Article  Google Scholar 

  16. Wei, B., Li, Y., Li, H., Yu, J., Ye, B., and Liang, T. Rare Earth Elements in Human Hair from a Mining Area of China, Ecotox. Environ. Safe, 2013, vol. 96, no. 4, pp. 118–123.

    Article  Google Scholar 

  17. Oliveira, M.S., Duarte, I.M., Paiva, A.V., Yunes, S.N., Almeida, C.E., Mattos, R.C., and Sarcinelli, P.N., The Role of Chemical Interactions between Thorium, Cerium, and Lanthanum in Lymphocyte Toxicity, Arch. Environ. Occup. H., 2014, vol. 69, no. 1, pp. 40–45.

    Article  Google Scholar 

  18. GOST 5180-84. Soils. Methods of Laboratory Determination of Physical Characteristics. Introduced 01.07.85.

  19. Metodika izmereniya aktivnosti radionuklidov s ispol’zovaniyem stsintillyatsionnogo y-spektrometra s programmnym obespecheniyem “PROGRESS”. Svid. N 40090.3N700 ot 22.12.2003 (Procedure for Measuring Radionuclide Activity Using a Scintillation \(\gamma\ \)-Spectrometer with Progress Software. Certificate 40090.3H700 of December 22, 2003), Mendeleevo: GNMTs VNIIFTRI.

  20. Metodicheskie rekomendatsii po prigotovleniyu schetnykh obraztsov dlya spektrometricheskikh kompleksov s programmnym obespecheniyem “PROGRESS”. Razrabotana Tsentrom metrologii ioniziruyushchikh izlucheniy VNIIFTRI, OOO “NTTS Amplituda” (Methodical Recommendations for the Preparation of Loads for Spectrometric Systems with Progress Software. Developed by the Center of the Metrology of Ionizing Radiation of VNIIFTRI, LLC NTC Amplituda), Moscow, Zelenograd, 2008.

  21. GOST 30108-94. Building Materials and Products. Determination of Effective Specific Activity of Natural Radionuclides. Introduced 01.01.1995.

  22. Lomtadze, V.D., Inzhenernaya geologiya. Inzhenernaya petrologiya (Engineering Geology. Engineering Petrology), Leningrad: Nedra, 1984.

  23. GOST 25100-2011. Soils. Classification, Moscow: Standartinform, 2013.

  24. SanPiN 2.6.1.2523-09. Standards of Radiation Safety NRB–99/2009.

  25. SanPiN 2.6.1.2800-10. Hygienic Requirements for Limiting Public Exposure Due to Natural Sources of Ionizing Radiation, SPS Garant.

  26. SP 2.6.1.2612-10. Basic Sanitary Rules for Ensuring Radiation Safety (OSPORB 99/2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Krasavtseva, D. V. Makarov, E. A. Selivanova or P. V. Ikkonen.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 3, pp. 190-198. https://doi.org/10.15372/FTPRPI20210318.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasavtseva, E.A., Makarov, D.V., Maksimova, V.V. et al. Studies of Properties and Composition of Loparite Ore Mill Tailings. J Min Sci 57, 531–538 (2021). https://doi.org/10.1134/S1062739121030182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121030182

Keywords

Navigation