Skip to main content
Log in

Stagewise Disintegration and Mechanical Activation in Dressing of Tin-Bearing Waste

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors test grinding of mining waste material to a preset grain size composition under stagewise increased destructive force and at reduced sliming. The optimized conditions are determined for disintegration of mineral and tin-bearing waste aggregates at minimized micro-size sliming. The quality of the final concentrates can be improved via mechanically activated grinding of roasting stage middlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Spooren, J., Binnemans, K., Björkmalm, J., Breemersch, K., Dams, Y., Folens, K., González-Moya, M., Horckmans, L., Komnitsas, K., Kurylak, W., Lopez, M., Mäkinen, J., Onisei, S., Oorts, K., Peys, A., Pietek, G., Pontikes, Y., Snellings, R., Tripiana, M., Varia, J., Willquist, K., Yurramendi, L., and Kinnunen, P., Near-Zero-Waste Processing of Llow-Grade, Complex Primary Ores and Secondary Raw Materials in Europe: Technology Development Trends (Review), Resources, Conservation and Recycling, 2020, vol. 160 (September), p. 18; https://doi.org/10.1016/j.resconrec.2020.104919.

    Article  Google Scholar 

  2. Urakaev, F.Kh., Shumskaya, L.G., Kirillova, E.A., and Kondrat’ev, S.A., Improvement of Fine Milling Technology for Mining Waste Based on Proportioned Stage-Wise Disintegration, J. Min. Sci., vol. 56, no. 5, pp. 828–837. DOI: 10.15372/FTPRPI20200519.

    Article  Google Scholar 

  3. Kalinin, E.P., Mineral Resources in the World Economy, Vestnik, 2008, no. 4, pp. 13–29. https://cyberleninka.ru/article/n/v-mirovoy-ekonomike/viewer.

  4. Makarov, A.B., Technogenic Deposits of Mineral Raw Materials, Sorosovskii obrazovatel’nyi zhurnal: Nauki o Zemle. Geologicheskaya deyatel’nost’ cheloveka, 2000, vol. 6, no. 8, pp. 76-80.

  5. Zhou, Y., Tong, X., Song, S., Deng, Z., Wang, X., Xie, X., and Xie, F., Beneficiation of Cassiterite and Iron Minerals from a Tin Tailing with Magnetizing Roasting-Magnetic Separation Process, Separation Scie. and Technol., 2013, vol. 48, iss. 9, pp. 1426–1432. DOI: 10.1080/01496395.2012. 726310.

    Article  Google Scholar 

  6. Li, X., Liu, S., Zhao, Y, and Li, T., Tin Recovery from a Cassiterite-Bearing Magnetite Refractory Ore, Applied Mechanics and Materials, 2014, vols. 543–547, pp. 3721–3724. DOI: 10.4028/www.scientific.net/ AMM.543-547.3721.

    Article  Google Scholar 

  7. Zhou, Y., Tong, X., Song, S., Wang, X., Deng, Z., and Xie, X., Beneficiation of Cassiterite Fines from a Tin Tailing Slime by Froth Flotation, Separation Sci. and Technol., 2014, vol. 49, iss. 3, pp. 458–463. DOI: 10.1080/01496395.2013.818036.

    Article  Google Scholar 

  8. Leistner, T., Embrechts, M., Leißner, T., Chelgani, S.C., Osbah, I., Möckel, R., Peuker, U.A., and Rudolph, M., A Study of the Reprocessing of Fine and Ultrafine Cassiterite from Gravity Tailing Residues by Using Various Flotation Techniques, Miner. Eng., 2016, vols. 96–97 (October), pp. 94–98. https://doi.org/10.1016/j.mineng.2016.06.020.

    Article  Google Scholar 

  9. Habib, A., Bhatti, H.N., and Iqbal, M., Metallurgical Processing Strategies for Metals Recovery from Industrial Slags, De Gruyter | 2020: Zeitschrift für Physikalische Chemie, 2020, vol. 234, iss. 2, pp. 201–223. DOI: http://doi.org/10.1515/zpch-2019-0001.

    Article  Google Scholar 

  10. Zvereva, V.P., Hypergene and Technogenic Minerals as an Indicator of the Ecological Condition of Tin Ore Regions in the Far East, Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya, 2005, no. 6, pp. 533–538. https://journals.eco-vector.com/0869-7809/index.

    Google Scholar 

  11. Komarov, M.A., Aliskerov, V.A., Kusevich, V.I., and Zavertkin, V.L., Mining Waste as an Additional Source of Mineral Raw Materials, Mineral’nye resursy Rossii: ekonomika i upravlenie, 2007, no. 4, pp. 3–9. https://www.elibrary.ru/item.asp?id=11713684.

  12. Krupskaya, L.T., Melkonyan, R.G., Zvereva, V.P., Rastanina, N.K., Golubev, D.A., and Filatova, M.Yu., Danger of Waste Accumulated by Mining Enterprises in the Far Eastern Federal District for the Environment and Recommendations for Reducing the Risk of Environmental Disasters, GIAB, 2018, no. 12, pp. 102–112. DOI: 10.25018/0236-1493-2018-12-0-102-112.

    Article  Google Scholar 

  13. Chainikov, V.V. and Gol’dman, E.L., Otsenka investitsii v osvoenie tekhnogennykh mestorozhdenii (Assessment of Investments in the Development of Manmade Deposits), Moscow: OOO Nedra-Biznestsentr, 2000. https://www.elibrary.ru/ item.asp?id=20287856.

  14. Deryagin, A.A., Kotova, V.M., and Nikol’sky, A.L., Assessment of the Prospects for Involving Manmade Deposits into Operation, Marksheyderiya i nedropol’zovaniye, 2001, no. 1 (1), pp. 15–19.

  15. Urakaev, F.Kh. and Yusupov, T.S., Numeric Evaluation of Kinematic and Dynamic Characteristics of Mineral Treatment in Disintegrator, J. Min. Sci., 2017, vol. 53, no. 1, pp. 133–140.

    Article  Google Scholar 

  16. Yusupov, T.S., Urakaev, F.Kh., and Isupov, V.P., Prediction of Structural-Chemical Change in Minerals under Mechanical Impact during Milling, J. Min. Sci., 2015, vol. 51, no. 5, pp. 1034–1040.

    Article  Google Scholar 

  17. Yusupov, T.S., Kondrat’ev, S.A., Khalimova, S.R., and Novikova, S.A., Mineralogical and Technological Assessment of Tin-Sulfide Mining Waste Dressability, J. Min. Sci., 2018, vol. 54, no. 4, pp. 656–662.

    Article  Google Scholar 

  18. Bru, K. and Parvaz, D.B., Improvement of the Selective Comminution of a Low-Grade Schist Ore Containing Cassiterite Using a High Voltage Pulse Technology (Conference Paper), Proc. of the 29th Int. Miner. Proc. Congress, 2019 https://www.researchgate.net/publication/331952637.

  19. Feng, J., Feng, X., Ma, S., Liu, J., Mo, W., Yang, J., and Su, X., Study on Grinding Kinetics of a Unique Double-Sphere Grinding Media for Cassiterite-Polymetallic Sulphide Ores, Applied Mechanics and Materials, 2014, vol. 457–458, pp. 236–239. DOI: 10.4028/www.scientific.net/AMM.457-458.236.

    Article  Google Scholar 

  20. Feng, J., Feng, X., Ma, S., Liu, J., Mo, W., Yang, J., and Su, X., The Effect of Ball Media with Different Diameters on Grinding Kinetics of Cassiterite-Polymetallic Sulphides, Appl. Mechanics and Materials, 2014, vol. 470, pp. 154–157. DOI: 10.4028/www.scientific.net/AMM.470.154.

    Article  Google Scholar 

  21. Yusupov, T.S., Baksheeva, I.I., and Rostovtsev, V.I., Analysis of Different-Type Mechanical Effects on Selectivity of Mineral Dissociation, J. Min. Sci., 2015, vol. 51, no. 6, pp. 1248–1253.

    Article  Google Scholar 

  22. Yusupov, T.S., Shumskaya, L.G., Kondrat’ev, S.A., Kirillova, E.A., and Urakaev, F.Kh., Mechanical Activation by Milling in Tin-Containing Mining Waste Treatment, J. Min. Sci., 2019, vol. 55, no. 5, pp. 804–810.

    Article  Google Scholar 

  23. Urakaev, F.Kh., Shumskaya, L.G., Kirillova, L.A., Kondrat’ev, S.A., and Yusupov, T.S., Influence of Conditions of Preliminary Mechanical Processing on the Beneficiation of Waste from Novosibirsk Tin Plant and Cassiterite Recovery from Technogenic Raw Materials. Problems of Geology and Expansion of the Mineral Resource Base of Eurasian Countries, Proc. of Int. Sci. Conf., Almaty: TOO IGN, 2019.

  24. Sun, L., Hu, Y.H., and Sun, W., Effect and Mechanism of Octanol in Cassiterite Flotation Using Benzohydroxamic Acid as Collector, Transactions of Nonferrous Metals Society of China, 2016, vol. 26, no. 12, pp. 3253–3257. DOI: 10.1016/S1003-6326(16)64458-8.

    Article  Google Scholar 

  25. Tian, M., Gao, Z., Sun, W., Han, H., Sun, L., and Hu, Y., Activation Role of Lead Ions in Benzohydroxamic Acid Flotation of Oxide Minerals: New Perspective and New Practice, Journal of Colloid and Interface Science, 2018, vol. 529 (1 November), pp. 150–160. https://doi.org/10.1016/j.jcis.2018.05.113.

    Article  Google Scholar 

  26. Wang, P.P., Qin, W.Q., Ren, L.Y., Wei, Q., Liu, R.Z., Yang, C.R., and Zhong, S.P., Solution Chemistry and Utilization of Alkyl Hydroxamic Acid in Flotation of Fine Cassiterite, Transactions of Nonferrous Metals Society of China, 2013, vol. 23, no. 6, pp. 1789–1796. DOI: 10.1016/S1003-6326(13)62662-X.

    Article  Google Scholar 

  27. Yang, W., Dai, H., and Wang, H., Progress of Cassiterite Sulfide Ore Beneficiation, Applied Mechanics and Materials, 2014, vols. 644–650, pp. 5439–5442. DOI:1 0.4028/www.scientific.net/AMM.644-650.5439.

  28. Ribeiro, A., Hajjaji, W., Seabra, M.P., and Labrincha, J.A., Malayaite Ceramic Pigments Prepared from Industrial Wastes: Formulation and Characterization (Conference Paper), Mater. Sci. Forum, 2010, vols. 636–637, pp. 1371–1376. DOI: 10.4028/www.scientific.net/MSF.636-637.1371.

    Article  Google Scholar 

  29. Lin, H., Yu, M.L., Dong, Y.B., Liu, Q.L., Liu, S.Y., and Liu, Y., The Heavy Metal Leaching Rules and Influence Mechanism of Different Particle Size of Tin Mining Waste Rock, Zhongguo Huanjing Kexue, China Environmental Sci., 2014, vol. 34, iss. 3, pp. 664–671.

    Google Scholar 

  30. Yousef, S., Tatariants, M., Bendikiene, R., Kriūkienė, R., and Denafas, G., A New Industrial Technology for Closing the Loop of Full-Size Waste Motherboards Using Chemical-Ultrasonic-Mechanical Treatment, Process Safety and Environmental Protection, 2020, vol. 140 (August), pp. 367–379. https://doi.org/10.1016/j.psep.2020.04.002.

    Article  Google Scholar 

  31. Caggiani, M.C., Barone, G., de Ferri, L., Laviano, R., Mangone, A., and Mazzoleni, P., Raman and SEM-EDS Insights into Technological Aspects of Medieval and Renaissance Ceramics from Southern Italy, J. of Raman Spectroscopy, 2021, vol. 52, iss. 1, pp. 186–198. DOI: 10.1002/jrs.5884.

    Article  Google Scholar 

  32. Kokulnathan, T., Kumar, J.V., Chen, S.M., Karthik, R., Elangovan, A., and Muthuraj, V., One-Step Sonochemical Synthesis of 1D \(\beta\)-stannous Tungstate Nanorods: An Efficient and Excellent Electrocatalyst for the Selective Electrochemical Detection of Antipsychotic Drug Chlorpromazine, Ultrasonics Sonochemistry, 2018, vol. 44 (June), pp. 231–239. DOI: 10.1016/j.ultsonch.2018.02.025.

    Article  Google Scholar 

  33. Lanari, P., Vho, A., Bovay, T., Laura Airaghi, L., and Centrella, S., Quantitative Compositional Mapping of Mineral Phases by Electron Probe Micro-Analyser, https://doi.org/10.1144/SP478.4, April 17, 2019, 25 p., Published as Book Chapter: Ferrero, S., Lanari, P., Goncalves, P., and Grosch, E.G. (Eds.), Metamorphic Geology: Microscale to Mountain Belts, Geol. Soc., London, Special Publications, vol. 478. https://doi.org/10.1144/SP478.

    Article  Google Scholar 

  34. Schulz, B., Merker, G., and Gutzmer, J., Automated SEM Mineral Liberation Analysis (MLA) with Generically Labelled EDX Spectra in the Mineral Processing of Rare Earth Element Ores, Minerals, 2019, vol. 9, iss. 9, art. 527 (18 p). https://doi.org/10.3390/min9090527.

    Article  Google Scholar 

  35. Ren, H., Li, J., Tang, Z., Zhao, Z., Chen, X., Liu, X., and He, L., Sustainable and Efficient Extracting of Tin and Tungsten from Wolframite—Scheelite Mixed Ore with High Tin Content, J. of Cleaner Production, 2020, vol. 269 (1 October), art. no. 122282, p. 27. https://doi.org/10.1016/ j.jclepro.2020.122282.

    Article  Google Scholar 

  36. Zglinicki, K., Szamalek, K., and Konopka, G., Monazite-Bearing Post Processing Wastes and their Potential Economic Significance, Gospodarka Surowcami Mineralnymi—Mineral Resources Management, 2020, vol. 36, iss. 1, pp. 37–58. DOI: 10.24425/gsm.2020.132549.

  37. Gong, D., Nadolski, S., Sun, C., Klein, B., and Kou, J., The Effect of Strain Rate on Particle Breakage Characteristics, Powder Technology, 2018, vol. 339 (November), pp. 595–605. DOI: 10.1016/j.powtec.2018.08.020.

    Article  Google Scholar 

  38. Lebedev, I.S., Dyakov, V.E., and Terebenin, A.N., Kompleksnaya metallurgiya olova (Complex Metallurgy of Tin), Novosibirsk: Novosibirskii pisatel’, 2004. https://otherreferats.allbest.ru/manufacture/00936694_0.html.

  39. Khasanov, A.S., Vokhidov, B.R., and Mamaraimov, G.F., Development of Technology for Obtaining Vanadium Pentoxide from Mineral and Technogenic Raw Materials, Universum: tekhnicheskie nauki-12. Metallurgiya i materialovedenie, 2020, no. 3 (72), p. 5. https://7universum.com/ru/tech/archive/item/9085.

  40. Liu, B., Zhang, Y., Su, Z., Li, G., and Jiang, T., Formation Kinetics of Na2SnO3 from SnO2 and Na2CO3 Roasted under CO-CO2Atmosphere, Int. J. of Miner. Proc., 2017, vol. 165, pp. 34-40. http://dx.doi.org/10.1016/j.minpro.2017.06.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Kh. Urakaev or S. A. Kondrat’ev.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 3, pp. 158-167. https://doi.org/10.15372/FTPRPI20210315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urakaev, F.K., Shumskaya, L.G., Kirillova, E.A. et al. Stagewise Disintegration and Mechanical Activation in Dressing of Tin-Bearing Waste. J Min Sci 57, 502–510 (2021). https://doi.org/10.1134/S1062739121030157

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121030157

Keywords

Navigation