Skip to main content
Log in

Collectability and Selectivity of Flotation Agent

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The hydrophobic property generated by chemisorbed agent influences selectivity of flotation but not always governs recovery of minerals. It is suggested to evaluate efficiency of a chemisorbed agent by two criteria. First, free surface energy reduction at the moment of local rupture of the liquid interlayer between particle and bubble. Second, displacement of the contact perimeter of three physical states of particle surface under the action of surface forces at their interface. It is found that physisorption conditions collectability of a flotation agent and recovery of a target mineral in concentrate. A physisorbed collector removes liquid from the particle-bubble interlayer. The definition of the physisorbed collector force is given and its essentiality is proved. The physisorbed collector force is effective at the gas–liquid interface rather than mineral–liquid interface, and is not selective. Selectivity of an agent is governed by the chemisorptions/physisorption activity ratio of a flotation agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Sharma, A. and Ruckenstein, E., Dewetting of Solids by the Formation of Holes in Macroscopic Liquid Films, J. Colloid Interface Sci., 1989, vol. 133, no. 2, pp. 358–368.

    Article  Google Scholar 

  2. Schulze, H.J., Hydrodynamics of Bubble–Mineral Particle Collisions, Miner. Process. Extr. Metall. Rev., 1989, vol. 5, pp. 43–76.

    Article  Google Scholar 

  3. Kondrat’ev, S.A. and Moshkin N.P., Foam Separation Selectivity Conditioned by the Chemically Attached Agent, Journal of Mining Science, 2014, vol. 50, no. 4, pp. 780–787.

    Article  Google Scholar 

  4. Yoon, R.-H. and Ravishankar, S., Long-Range Hydrophobic Forces between Mica Surfaces in Dodecylammonium Chloride Solution in the Presence of Dodecanol, J. Colloid Interface Sci., 1996, vol. 179, no. 2, pp. 391–402.

    Article  Google Scholar 

  5. Cherry, B.W. and Holmes, C.M., Kinetics of Wetting of Surfaces by Polymers, J. Colloid Interface Sci., 1969, vol. 29, no. 1, pp. 174–176.

    Article  Google Scholar 

  6. Brabcova, Z., Vachova, T., and Basarova, P., Study of the Three-Phase Contact Expansion during the Bubble Adhesion on a Hydrophobic Solid Surface, Int. Miner. Process. Congress (IMPC), New Delhi, India, 2012, pp. 640–649.

  7. Phan, Ch.M., Nguyen, A.V., and Evans, G.M., Assessment of Hydrodynamic and Molecular–Kinetic Models Applied to The Motion of the Dewetting Contact Line between a Small Bubble and a Solid Surface, Langmuir, 2003, vol. 19, pp. 6796–6801.

    Article  Google Scholar 

  8. Schulze, H.J., Elements of Physically-Based Modeling of the Flotation Process, Innovations in Flotation Technology: Proc. of the NATO, Advanced Study Institute on Innovations in Flotation Technology, P. Mavros and K.A. Matis (Eds.), 1991, vol. 208, pp. 171–180. DOI: 10.1007/978-94-011-2658-8.

  9. Albijanic, B., Ozdemir, O., Nguyen, A.V., and Bradshaw, D., A Review of Induction and Attachment Times of Wetting Thin Films between Air Bubbles and Particles and Its Relevance in the Separation of Particles by Flotation, Adv. Colloid Interface Sci., 2010, vol. 159, no 1, pp. 1–21.

    Article  Google Scholar 

  10. Rulev, N.N. and Dukhin, S.S., Dynamics of Thinning of Liquid Film during Inertia Collision between Particle and Bubble in Their Attachment, Kolloid. Zh., 1986, vol. 48, no. 2, pp. 302–310.

    Google Scholar 

  11. Bleier, A., Goddard, E.D., and Kulkarni, R.D., Adsorption and Critical Flotation Conditions, J. Colloid Interface Sci., 1977, vol. 59, pp. 490–504.

    Article  Google Scholar 

  12. Perea-Carpio, R., Gonzales-Caballero, F., and Bruque, J.M., On the Interactions at Interfaces in Fluorite Flotation, Int. J. Miner. Process., 1988, vol. 23, pp. 229–240.

    Article  Google Scholar 

  13. Somasundaran P. The Relationship between Adsorption at Different Interfaces and Flotation Behavior Transactions AIME1968, vol. 24, pp. 105–108.

    Google Scholar 

  14. Somasundaran P. and Fuerstenau, D.W. On the Incipient Flotation Condition Transactions AIME 1968, vol. 241, pp. 102–104.

    Google Scholar 

  15. Wilson, D.J., Electrical Aspects of Adsorbing Colloid Flotation, VII. Cooperative Phenomena, Separation Science, 1977, vol. 12, pp. 447–460. doi.org/10.1080/00372367708058089.

    Article  Google Scholar 

  16. Sutherland, K.L. and Wark, I.W., Principles of Flotation, Melbourne: Austr. Inst. Min. Metall., 1955.

  17. Klassen, V.I. and Tikhonov, S.A., Effect of Sodium Oleate on Flotation Properties of Air Bubble Surface, Tsv. Metally, 1960, no. 10, pp. 4–8.

  18. Wark, E. and Wark, I., Influence of Micelle Formation on Flotation, Nature, 1939, vol. 143, P. 856.

    Article  Google Scholar 

  19. Kondrat’ev, S.A., Fizicheskaya forma sorbtsii reagenta i ee naznachenie vo flotatsii (Physisorption of an Agent Its Purpose in Flotation), Novosibirsk: Nauka, 2018.

    Google Scholar 

  20. Bogdanov, OS., Maksikov, II., Podnek, A.K., and Yanis, N.A., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Flotation), Moscow: Nedra, 1980.

    Google Scholar 

  21. Bogdanov, OS., Maksikov, II., Podnek, A.K., and Yanis, N.A., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Flotation), Moscow: Nedra, 1990.

    Google Scholar 

  22. Ngobeni, W.A. and Hangone, G., The Effect of Using Pure Thiol Collectors on the Froth Flotation on Pentlandite Containing Ore, South African J. Chem. Eng., 2013, vol. 18, no. 1, pp. 41–50.

    Google Scholar 

  23. Kloppers, L., Maree, W., Oyekola, O., and Hangone, G., Froth Flotation of Merensky Reef Platinum Bearing Ore Using Mixtures of SIBX with a Dithiophosphate and a Dithiocarbamate, Miner. Eng., 2015, vol. 20, pp. 1047–1053.

    Google Scholar 

  24. Karimian, A., Rezaei B., and Masoumi A. The Effect of Mixed Collectors in the Rougher Flotation of Sungun Copper, Life Sci. J., 2013, vol. 10, pp. 268–272.

    Google Scholar 

  25. McFadzean, B., Castelyn, D.G., and O’Connor, C.T., The Effect of Mixed Thiol Collectors on the Flotation of Galena, Miner. Eng., 2012, vol. 36–38, pp. 211–218.

    Article  Google Scholar 

  26. Hangone, G., Bradshaw, D., and Ekmekci, Z., Flotation of a Copper Sulphide Ore from Okiep Using Thiol Collectors and Their Mixtures, J. S. Afr. Inst. Min. Metall., 2005, vol. 105, pp. 199–206.

    Google Scholar 

  27. Bradshaw, D.J. and O’Connor, C.T., The Flotation of Pyrite Using Mixtures of Dithiocarbamates and Other Thiol Collectors, Miner. Eng., 1994, vol. 7, no. 5/6, pp. 681–690.

    Article  Google Scholar 

  28. Nain Ling U., Selectivity Enhancement in Flotation of Pyritic Copper–Zinc Ore Using Pyrite Flotation Modifiers Based on Iron Compounds (II), Candidate of Engineering Sciences Dissertation, Moscow: MISIS, 2015.

  29. McMurray J. Organic Chemistry Fifth Edition, Brooks Cole, New York 1996.

  30. Nagaraj, D.R. and Ravishankar, S.A., Flotation Reagents—A Critical Overview from an Industry Perspective, Froth Flotation: A Century of Innovation, Fuerstenau M.C., Graeme J., Yoon R.H. (Eds.), Society for Mining, Metallurgy, and Exploration, Littleton, Colorado, 2007.

  31. Bradshaw D.J. Synergistic Effects between Thiol Collectors Used in the Flotation of Pyrite, Ph. D. Thesis, University of Cape Town, 1997.

  32. Lotter, N.O. and Bradshaw, D.J. The Formulation and Use of Mixed Collectors in Sulphide Flotation, Miner. Eng., 2010, vol. 23, pp. 945–951.

    Article  Google Scholar 

  33. Babel, B. and Rudolph, M., Investigating Reagent–Mineral Interactions by Colloidal Probe Atomic Force Microscopy, The 24th Int. Miner. Process. Congress Proceedings, Moscow, 2018, pp. 1384–1391.

  34. Leja, J., Surface Chemistry of Froth Flotation, 1st Edition, New York and London: Plenum Press, 1982.

  35. Gardner, J.R. and Woods, R., Use of a Particulate Bed Electrode for the Electrochemical Investigation of Metal and Sulphide Flotation, Aust. J. Chem., 1973, vol. 26, pp. 1635–1644.

    Article  Google Scholar 

  36. Kondrat’ev, S.A. and Moshkin, N.P., Estimate of Collecting Force of Flotation Agent, Journal of Mining Science, 2015, vol. 51, no. 1, pp. 150–156.

    Article  Google Scholar 

  37. Summ, B.D. and Goryunov, Yu.V., Fiziko-khimichskie osnovy smachivaniya i rastekaniya (Physicochemistry of Wetting and Spreading), Moscow: Khimiya, 1976.

    Google Scholar 

  38. Voyutskii, S.S., Kurs kolloidnoi khimii (Course of Colloid Chemistry), Moscow: Khimiya, 1975.

    Google Scholar 

  39. Konovalov, I.A. and Kondrat’ev, S.A., Flotation Activity of Xanthogenates, Journal of Mining Science, 2020, vol. 56, no. 1, pp. 104–112.

    Article  Google Scholar 

  40. Rybinski, W. and Schwuger, M.J., Adsorption of Surfactant Mixtures in Froth Flotation, Langmuir, 1986, vol. 2, pp. 639–643.

    Article  Google Scholar 

  41. Abramov, A.A., Selective Collector Composing and Selecting Requirements. Part II: Physicochemical Properties of Selective Collector (Discussion), Tsv. Metally, 2012, no. 5, pp. 14–17.

    Google Scholar 

  42. Mitrofanov, S.I. and Sokolova, G.E., Flotation of Barite from Dolomitic Limestone by Alkyl Sulfates at Mirgalimsay Concentration Factory, Issledovaniya obogatimosti rud tsvetnykh metallov (Dressability of Nonferrous Metals), Moscow: Tsvetmetinformatsiya, 1965, pp. 23–30.

  43. Kondrat’ev, S.A., Action of Physisorbed Collector in Particle–Bubble Attachment, Journal of Mining Science, 2021, vol. 57, no. 1, pp. 106–122.

    Google Scholar 

  44. Bhaskar Raju, G. and Forsling, W., Adsorption Mechanism of Diethyldithiocarbamate on Covellite, Cuprite and Tenorite, Colloids and Surf., 1991, vol. 60, pp. 53–69.

    Article  Google Scholar 

  45. Zhong, H., Huang Z., Zhao G., Wang S., Liu G., and Cao, Z. The Collecting Performance and Interaction Mechanism of Sodium Diisobutyl Dithiophosphinate in Sulfide Minerals Flotation, J. Mater. Res. Technol., 2015, vol. 4, pp. 151–160.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kondrat’ev.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 3, pp. 133-147. https://doi.org/10.15372/FTPRPI20210313.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondrat’ev, S.A. Collectability and Selectivity of Flotation Agent. J Min Sci 57, 480–492 (2021). https://doi.org/10.1134/S1062739121030133

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121030133

Keywords

Navigation