Skip to main content
Log in

Mathematical Modeling of Deformation and Failure of Salt Rock Samples

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

In uniaxial compression tests of cubic samples, the authors measure displacements in the mid-cross section of the samples at different distances from side faces. The mathematical modeling of deformation of salt rock samples uses the elastoplastic model with linear isotropic strengthening and the associated flow rule. The plasticity condition is the three-dimension strength criterion reflective of shearing and tensile fracturing. The 3D FEM-based mathematical modeling is implemented in terms of displacements with discretization into 8-point isoparametric hexahedral elements. The mathematical model of deformation and failure of salt rock samples is calibrated using the calculation results. The elastoplastic model with linear isotropic strengthening ensures reasonable agreement between the experimental and theoretical data, and is applicable to estimating stability of rib pillars, critical lateral strain rates in the pillars and their remaining life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. The Mechanical Behavior of Salt IX, Proc. of the 9th Conf. on the Mechanical Behavior of Salt (SaltMech IX), Hannover, Germany, 2018.

  2. He, M.M., Ren, J., Su, P., Li, N., and Chen, Y.H., Experimental Investigation on Fatigue Deformation of Salt Rock, J. Soil Mech. and Found. Eng., 2020, vol. 56, no. 6, pp. 402–409.

    Article  Google Scholar 

  3. Dubey, R.K. and Gairola, V.K., Influence of Structural Anisotropy on the Uniaxial Compressive Strength of Pre-Fatigued Rocksalt from Himachal Pradesh, India, J. Rock Mech. Min. Sci., 2000, vol. 37, no. 6, pp. 993–999.

    Article  Google Scholar 

  4. Závada, P., Desbois, G., Urai, J.L., Schulmann, K., Rahmati, M., Lexa, O., and Wollenberg, U., Impact of Solid Second Phases on Deformation Mechanisms of Naturally Deformed Salt Rocks (Kuh-e-Namak, Dashti, Iran) and Rheological Stratification of the Hormuz Salt Formation, J. Structural Geol., 2015, vol. 74, pp. 117–144.

    Article  Google Scholar 

  5. Chemia, Z., Koyi, H., and Schmeling, H., Numerical Modeling of Rise and Fall of a Dense Layer in Salt Diapirs, Geophysical J. Int., 2008, vol. 172, no. 2, pp. 798–816.

    Article  Google Scholar 

  6. Baryakh, A.A., Lobanov, S.Y., and Lomakin, I.S., Analysis of Time-to-Time Variation of Load on Rib pillars in Mines of the Upper Kama Potash Salt Deposit, J. Min. Sci., 2015, vol. 51, no. 4. pp. 696–706.

    Article  Google Scholar 

  7. Palac-Walko, B. and Pytel, W., Geomechanical Risk Assessment for Saltrock Underground Workings, Using Strength Theories Based on Selected 2D and True 3D Triaxial Compression Laboratory Tests, Int. Multidisciplinary Scientific GeoConf. Surveying Geol. and Min. Ecol. Management, SGEM, 2019, vol. 19, iss. 1.3, pp. 307–314.

    Google Scholar 

  8. Wang, Q. and Hesser, J., Determination of the Deformation Behavior of Salt Rock by Evaluation of Convergence Measurements in Shafts, Rock Characterization, Modeling and Engineering Design Methods, Proc. of the 3rd ISRM SINOROCK 2013 Symp., 2013.

  9. Deng, J.Q., Yang, Q., Liu, Y.R., and Pan, Y.W., Stability Evaluation and Failure Analysis of Rock Salt Gas Storage Caverns Based on Deformation Reinforcement Theory, Comp. and Geotech., 2015, vol. 68, pp. 147–160.

    Article  Google Scholar 

  10. Yin, H., Yang, C., Ma, H., Shi, X., Zhang, N., Ge, X., Li, H., and Han, Y., Stability Evaluation of Underground Gas Storage Salt Caverns with Micro-Leakage Interlayer in Bedded Rock Salt of Jintan, China, Acta Geotechnica, 2020, vol. 15, iss. 3, pp. 549–556.

    Article  Google Scholar 

  11. Tsang, C.F., Bernier, F., and Davies, C., Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays—In the Context of Radioactive Waste Disposal, J. Rock Mech. Min. Sci., 2005, vol. 42, pp. 109–125.

    Article  Google Scholar 

  12. Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh ob’ektov na Verkhnekamskom mestorozhdenii kaliino-magnievykh solei (Guidelines for the Protection of Mines from Flooding and Protection of Undermined Objects in the Upper Kama Deposit of Potash-Magnesium Salts), Perm: Berezniki, 2014.

  13. BS EN 1918-3: Gas Infrastructure — Underground Gas Storage. P. 3. Functional Recommendations for Storage in Solution-Mined Salt Caverns, British Standards Institution, London, 2016.

  14. Heusermann, S., Rolfs, O., and Schmidt, U., Nonlinear Finite-Element Analysis of Solution Mined Storage Caverns in Rock Salt Using the LUBBY2 Constitutive Model, Computers and Structures, 2003, vol. 81, iss. 8–11, pp. 629–638.

    Article  Google Scholar 

  15. Hou, Z., Mechanical and Hydraulic Behavior of Rock Salt in the Excavation Disturbed Zone around Underground Facilities, J. Rock Mech. Min. Sci., 2003, vol. 40, no. 5, pp. 725–738.

    Article  Google Scholar 

  16. Baryakh, A.A., Bel’tyukov, N.L., Samodelkina, N.A., and Toksarov, V.N., Justification of Secondary Mining of Potassium Reserves, J. Min. Sci., 2020, vol. 56, no. 3. pp. 404–415.

    Article  Google Scholar 

  17. Baryakh, A., Lobanov, S., Lomakin, I., and Tsayukov, A., Mathematical Modelling of Limit States for Load Bearing Elements in Room-and-Pillar Mining of Saliferous Rocks, EUROCK 2018: Geomechanics and Geodynamics of Rock Masses, 2018, Taylor and Francis Group, London.

  18. Evseev, A., Asanov, V., Lomakin, I., and Tsayukov, A., Experimental and Theoretical Studies of Undermined Strata Deformation during Room-and-Pillar Mining, EUROCK 2018: Geomechanics and Geodynamics of Rock Masses, 2018, Taylor and Francis Group, London.

  19. Garagash, I.A. and Nikolaevskii, V.N., Unassociated Laws of Flow and Localization of Plastic Deformation, Uspekhi Mekhaniki, 1989, vol. 12, no. 1, pp. 131–183.

    Google Scholar 

  20. Stefanov, Yu.P., Localization of Deformations and Failure in Geomaterials. Numerical Modeling, Fiz. Mezomekhanika, 2020, no. 5, pp. 107–118.

  21. Stefanov, Yu.P. and Evseev, V.D., Numerical Study of Deformation and Rock Failure under the Action of a Rigid Stamp, Izv. TPU, 2009, vol. 315, no. 1, pp. 77–81.

    Google Scholar 

  22. Baryakh, A.A. and Samodelkina, N.A., About One Criteria of Strength of Rocks, Chebyshevskii Sbornik, 2017, vol. 18, iss. 3, pp. 72–87.

    Article  Google Scholar 

  23. Zienkiewicz, O.C., Taylor, R.L., and Zhu, J.Z., The Finite Element Method: Its Basis and Fundamentals, Butterworth-Heinemann, Oxford, 2013.

  24. Fadeev, A.B., Metod konechnykh elementov v geomekhanike (Finite Element Method in Geomechanics), Moscow: Nedra, 1987.

    Google Scholar 

  25. Neto, Eduardo A. de Souza, Peric, D., and Owen, D.R.J., Computational Methods for Plasticity: Theory and Applications, John Wiley and Sons Ltd, Chichester, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Baryakh.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 3, pp. 13-23. https://doi.org/10.15372/FTPRPI20210302.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baryakh, A.A., Tsayukov, A.A., Evseev, A.V. et al. Mathematical Modeling of Deformation and Failure of Salt Rock Samples. J Min Sci 57, 370–379 (2021). https://doi.org/10.1134/S1062739121030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121030029

Keywords

Navigation